login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303872
Triangle read by rows: T(0,0) = 1; T(n,k) = -T(n-1,k) + 2 T(n-1,k-1) for k = 0,1,...,n; T(n,k)=0 for n or k < 0.
6
1, -1, 2, 1, -4, 4, -1, 6, -12, 8, 1, -8, 24, -32, 16, -1, 10, -40, 80, -80, 32, 1, -12, 60, -160, 240, -192, 64, -1, 14, -84, 280, -560, 672, -448, 128, 1, -16, 112, -448, 1120, -1792, 1792, -1024, 256, -1, 18, -144, 672, -2016, 4032, -5376, 4608, -2304, 512
OFFSET
0,3
COMMENTS
Row n gives coefficients in expansion of (-1+2x)^n. Row sums=1.
In the center-justified triangle, the numbers in skew diagonals pointing top-Left give the triangle in A133156 (coefficients of Chebyshev polynomials of the second kind), and the numbers in skew diagonals pointing top-right give the triangle in A305098. The coefficients in the expansion of 1/(1-x) are given by the sequence generated by the row sums. The generating function of the central terms is 1/sqrt(1+8x), signed version of A059304.
REFERENCES
Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 389-391.
FORMULA
Also has the g.f.: 1 / (1 + t - 2t*x).
EXAMPLE
Triangle begins:
1;
-1, 2;
1, -4, 4;
-1, 6, -12, 8;
1, -8, 24, -32, 16;
-1, 10, -40, 80, -80, 32;
1, -12, 60, -160, 240, -192, 64;
-1, 14, -84, 280, -560, 672, -448, 128;
1, -16, 112, -448, 1120, -1792, 1792, -1024, 256;
MATHEMATICA
T[0, 0] = 1; T[n_, k_] := If[n < 0 || k < 0, 0, - T[n - 1, k] + 2 T[n - 1, k - 1]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten.
For[i = 0, i < 4, i++, Print[CoefficientList[Expand[(-1 +2 x)^i], x]]].
PROG
(PARI) T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, -T(n-1, k) + 2*T(n-1, k-1)));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 26 2018
CROSSREFS
Row sums give A000012.
Signed version of A013609 ((1+2*x)^n).
Cf. A033999 (column 0).
Sequence in context: A097750 A304623 A133544 * A013609 A154558 A220836
KEYWORD
tabl,easy,sign
AUTHOR
Shara Lalo, May 25 2018
STATUS
approved