The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A303875 Number of noncrossing partitions of an n-set up to rotation and reflection with all blocks having a prime number of elements. 5
 1, 0, 1, 1, 1, 2, 3, 5, 7, 14, 26, 49, 107, 215, 502, 1112, 2619, 6220, 14807, 36396, 88397, 219920, 545196, 1364669, 3434436, 8658463, 21989434, 55893852, 142823174, 365766327, 939575265, 2420885031, 6250344302, 16183450744, 41981605437, 109155492638 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS The number of such noncrossing partitions counted distinctly is given by A210737. LINKS Andrew Howroyd, Table of n, a(n) for n = 0..500 PROG (PARI) \\ number of partitions with restricted block sizes NCPartitionsModDihedral(v)={ my(n=#v); my(p=serreverse( x/(1 + sum(k=1, #v, x^k*v[k])) + O(x^2*x^n) )/x); my(vars=variables(p)); my(varpow(r, d)=substvec(r + O(x^(n\d+1)), vars, apply(t->t^d, vars))); my(q=x*deriv(p)/p, h=varpow(p, 2)); my(R=sum(i=0, (#v-1)\2, v[2*i+1]*x*(x^2*h)^i), Q=sum(i=1, #v\2, v[2*i]*(x^2*h)^i), T=sum(k=1, #v, my(t=v[k]); if(t, x^k*t*sumdiv(k, d, eulerphi(d) * varpow(p, d)^(k/d))/k))); (T + 2 + intformal(sum(d=1, n, eulerphi(d)*varpow(q, d))/x) - p + (1 + Q + (1+R)^2*h/(1-Q))/2)/2 + O(x*x^n) } Vec(NCPartitionsModDihedral(vector(40, k, isprime(k)))) CROSSREFS Cf. A111275, A185100 (1 or 2), A210737, A303874, A303931. Sequence in context: A028304 A324840 A316475 * A331037 A228652 A157833 Adjacent sequences:  A303872 A303873 A303874 * A303876 A303877 A303878 KEYWORD nonn AUTHOR Andrew Howroyd, May 01 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 23:37 EST 2020. Contains 330995 sequences. (Running on oeis4.)