login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097742
Pell equation solutions (10*b(n))^2 - 101*a(n)^2 = -1 with b(n)=A097741(n), n >= 0.
5
1, 401, 161201, 64802401, 26050404001, 10472197606001, 4209797387208401, 1692328077460171201, 680311677341601614401, 273483601963246388818001, 109939727677547706703222001, 44195497042772214848306426401, 17766479871466752821312480191201, 7142080712832591861952768730436401
OFFSET
0,2
FORMULA
a(n) = S(n, 2*201) - S(n-1, 2*201) = T(2*n+1, sqrt(101))/sqrt(101), with Chebyshev polynomials of the 2nd and first kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x); and A053120 for the T-triangle.
a(n) = ((-1)^n)*S(2*n, 20*i) with the imaginary unit i and Chebyshev polynomials S(n, x) with coefficients shown in A049310.
G.f.: (1-x)/(1-402*x+x^2).
a(n) = 402*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=401. - Philippe Deléham, Nov 18 2008
EXAMPLE
(x,y) = (10*1=10;1), (4030=10*403;401), (1620050=10*162005;161201), ... give the positive integer solutions to x^2 - 101*y^2 =-1.
MATHEMATICA
LinearRecurrence[{402, -1}, {1, 401}, 12] (* Ray Chandler, Aug 12 2015 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1-x)/(1-402*x+x^2)) \\ G. C. Greubel, Aug 01 2019
(Magma) I:=[1, 401]; [n le 2 select I[n] else 402*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
(Sage) ((1-x)/(1-402*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
(GAP) a:=[1, 401];; for n in [3..20] do a[n]:=402*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
CROSSREFS
Cf. A097740 for S(n, 402).
Row 10 of array A188647.
Sequence in context: A156785 A031628 A179293 * A115244 A031518 A104391
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2004
STATUS
approved