login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098244 First differences of Chebyshev polynomials S(n,171)=A097844(n) with Diophantine property. 5
1, 170, 29069, 4970629, 849948490, 145336221161, 24851643870041, 4249485765555850, 726637214266180309, 124250714153751276989, 21246145483077202184810, 3632966626892047822325521, 621216047053057100415479281, 106224311079445872123224631530 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

(13*b(n))^2 - 173*a(n)^2 = -4 with b(n)=A097845(n) give all positive solutions of this Pell equation.

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..446

Tanya Khovanova, Recursive Sequences

Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.

Index entries for linear recurrences with constant coefficients, signature (171, -1).

Index entries for sequences related to Chebyshev polynomials.

FORMULA

a(n) = ((-1)^n)*S(2*n, 13*I) with the imaginary unit I and the S(n, x)=U(n, x/2) Chebyshev polynomials.

G.f.: (1-x)/(1-171*x+x^2).

a(n) = S(n, 171) - S(n-1, 171) = T(2*n+1, sqrt(173)/2)/(sqrt(173)/2), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x) and T(n, x) Chebyshev's polynomials of the first kind, A053120.

a(n) = 171*a(n-1) - a(n-2), n>1 ; a(0)=1, a(1)=170 . - Philippe Deléham, Nov 18 2008

EXAMPLE

All positive solutions of Pell equation x^2 - 173*y^2 = -4 are (13=13*1,1), (2236=13*172,170), (382343=13*29411,29069), (65378417=13*5029109,4970629), ...

MATHEMATICA

LinearRecurrence[{171, -1}, {1, 170}, 20] (* G. C. Greubel, Aug 01 2019 *)

PROG

(PARI) my(x='x+O('x^20)); Vec((1-x)/(1-171*x+x^2)) \\ G. C. Greubel, Aug 01 2019

(MAGMA) I:=[1, 170]; [n le 2 select I[n] else 171*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019

(Sage) ((1-x)/(1-171*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019

(GAP) a:=[1, 170];; for n in [3..20] do a[n]:=171*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019

CROSSREFS

Sequence in context: A210784 A178499 A133328 * A250957 A114048 A187704

Adjacent sequences:  A098241 A098242 A098243 * A098245 A098246 A098247

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Sep 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 09:33 EST 2019. Contains 329843 sequences. (Running on oeis4.)