login
A133328
Values of n such that the sum of the 7-gonal number (5*n^2 - 3*n)/2 and the following 7-gonal number is a 7-gonal number.
3
0, 170, 13622, 6672192, 534017484, 261563278454, 20934553401986, 10253803635289356, 820676361930645528, 401969609849050063298, 32172154719470612594510, 15758012635048656946126680, 1261212808492010592999343332, 617745610917207839753008053902
OFFSET
1,2
COMMENTS
Both bisections of the sequence satisfy the recurrence relation a(n+2) = 39202*a(n+1) - a(n) + 7840.
Also nonnegative integers x in the solution to 10*x^2-5*y^2+4*x+3*y+2 = 0, the corresponding values of y being A133327. - Colin Barker, Dec 05 2014
FORMULA
G.f.: 2*x^2*(6*x^3+2885*x^2-6726*x-85) / ((x-1)*(x^2-198*x+1)*(x^2+198*x+1)). - Colin Barker, Dec 05 2014
PROG
(PARI) concat(0, Vec(2*x^2*(6*x^3+2885*x^2-6726*x-85)/((x-1)*(x^2-198*x+1)*(x^2+198*x+1)) + O(x^100))) \\ Colin Barker, Dec 05 2014
CROSSREFS
Sequence in context: A187520 A210784 A178499 * A098244 A250957 A114048
KEYWORD
nonn,easy
AUTHOR
Richard Choulet, Oct 18 2007
EXTENSIONS
More terms from Colin Barker, Dec 05 2014
STATUS
approved