login
A098241
Numbers k such that 216*k+108 is a term of A097703 and A007494 and A098240.
2
302, 2117, 2909, 3327, 3932, 5142, 5747, 6957, 8772, 9377, 11192, 12402, 13007, 14217, 14547, 16032, 17847, 18452, 20267, 20366, 21477, 22082, 23292, 23897, 25107, 25403, 26922, 27527, 29342, 30552, 31157, 32367, 32972, 34182, 35997, 36602, 37823, 38417, 39627
OFFSET
1,1
COMMENTS
Numbers k such that m = 216*k+108 satisfies sigma(m) <> 2*usigma(m) (A097703), m is not of the form 3x+1 (A007494) and GCD(2*m+1, numerator(Bernoulli(4*m+2))) is squarefree (A098240).
Also, terms m of A097704 such that GCD(2*m+1, Bernoulli(4*m+2)) is squarefree. Most terms of A097704 are in A098240. These are the exceptions.
LINKS
MATHEMATICA
usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; lmt = 1296000; t = (Select[ Range[ lmt], DivisorSigma[1, # ] == 2usigma[ # ] &] - 108)/216; u = (Select[ Range[ Floor[(lmt - 108)/432]], !SquareFreeQ[ GCD[ #, Numerator[ BernoulliB[ 2# ]] ]] &] -1)/2; v = Table[ 3k - 2, {k, Floor[(lmt - 108)/216]}]; Complement[ Range[ Floor[ (lmt - 108)/216]], t, u, v]
q[n_] := Mod[n, 3] != 1 && (Divisible[2*n + 1, 3] || (! Divisible[2*n + 1, 3] && ! SquareFreeQ[2*n + 1])) && SquareFreeQ[GCD[2*n + 1, BernoulliB[4*n + 2]]]; Select[Range[10^4, q] (* Amiram Eldar, Aug 31 2024 *)
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Amiram Eldar, Aug 31 2024
STATUS
approved