login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097844 Chebyshev polynomials S(n,171). 4
1, 171, 29240, 4999869, 854948359, 146191169520, 24997835039561, 4274483600595411, 730911697866775720, 124981625851618052709, 21371127108928820237519, 3654337754000976642563040, 624870384807058077058042321, 106849181464252930200282673851 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Used for all positive integer solutions of Pell equation x^2 - 173*y^2 = -4. See A097845 with A098244.

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..446

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (171, -1).

FORMULA

a(n) = S(n, 171) = U(n, 171/2) = S(2*n+1, sqrt(173))/sqrt(173) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x).

a(n) = 171*a(n-1) - a(n-2), n >= 1, a(-1)=0, a(0)=1, a(1)=171.

a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (171+13*sqrt(173))/2 and am = (171-13*sqrt(173))/2 = 1/ap.

G.f.: 1/(1-171*x+x^2).

MATHEMATICA

CoefficientList[Series[1/(1-171x+x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{171, -1}, {1, 171}, 30] (* Harvey P. Dale, Mar 21 2013 *)

PROG

(PARI) my(x='x+O('x^30)); Vec(1/(1-171*x+x^2)) \\ G. C. Greubel, Jan 14 2019

(MAGMA) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(1-171*x+x^2) )); // G. C. Greubel, Jan 14 2019

(Sage) (1/(1-171*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 14 2019

(GAP) a:=[1, 171];; for n in [3..30] do a[n]:=171*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2019

CROSSREFS

Cf. A097845, A098244.

Sequence in context: A046166 A262113 A145625 * A076573 A015356 A259158

Adjacent sequences:  A097841 A097842 A097843 * A097845 A097846 A097847

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Sep 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 03:48 EST 2019. Contains 329990 sequences. (Running on oeis4.)