OFFSET
0,2
COMMENTS
(21*a(n))^2 - 445*b(n)^2 = -4 with b(n)=A098256(n) give all positive solutions of this Pell equation.
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..377
Tanya Khovanova, Recursive Sequences
Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.
Index entries for linear recurrences with constant coefficients, signature (443, -1).
FORMULA
a(n) = S(n, 443) + S(n-1, 443) = S(2*n, sqrt(445)), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x). S(n, 443)=A098254(n).
a(n) = (-2/21)*i*((-1)^n)*T(2*n+1, 21*i/2) with the imaginary unit i and Chebyshev's polynomials of the first kind. See the T-triangle A053120.
G.f.: (1+x)/(1-443*x+x^2).
a(n) = 443*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=444. - Philippe Deléham, Nov 18 2008
EXAMPLE
All positive solutions of Pell equation x^2 - 445*y^2 = -4 are (21=21*1,1), (9324=21*444,442), (4130511=21*196691,195805),(1829807049=21*87133669,86741173), ...
MATHEMATICA
LinearRecurrence[{443, -1}, {1, 444}, 12] (* Indranil Ghosh, Feb 18 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 10 2004
STATUS
approved