

A140066


(5n^2  11n + 8)/2.


2



1, 3, 10, 22, 39, 61, 88, 120, 157, 199, 246, 298, 355, 417, 484, 556, 633, 715, 802, 894, 991, 1093, 1200, 1312, 1429, 1551, 1678, 1810, 1947, 2089, 2236, 2388, 2545, 2707, 2874, 3046, 3223, 3405, 3592, 3784
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Binomial transform of [1, 2, 5, 0, 0, 0,...].


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000
Index entries for sequences related to linear recurrences with constant coefficients, signature (3,3,1).


FORMULA

A007318 * [1, 2, 5, 0, 0, 0,...].
a(n)=A000217(n)+4*A000217(n2). O.g.f.: x*(1+4x^2)/(1x)^3.  R. J. Mathar, May 06 2008
a(n)=(811n+5n^2)/2.  Emeric Deutsch, May 07 2008
Ogf([1,3,10,22,39,61,88,120,157,199,246,298,355,417]) = (4*x^2 + 1)/(x^3 + 3*x^2  3*x + 1)  Alexander R. Povolotsky, May 06 2008
a(n)=a(n1)+5*n8 (with a(1)=1) [From Vincenzo Librandi, Nov 24 2010]
a(1)=1, a(2)=3, a(3)=10, a(n)=3*a(n1)3*a(n2)+a(n3) [From Harvey P. Dale, Jan 28 2012]


EXAMPLE

a(4) = 22 = (1, 3, 3, 1) dot (1, 2, 5, 0) = (1, + 6 + 15 + 0).


MAPLE

seq((811*n+5*n^2)*1/2, n=1..40);  Emeric Deutsch, May 07 2008


MATHEMATICA

Table[(5n^211n+8)/2, {n, 40}] (* or *) LinearRecurrence[{3, 3, 1}, {1, 3, 10}, 40] (* Harvey P. Dale, Jan 28 2012 *)


CROSSREFS

Sequence in context: A190092 A174459 A122795 * A006503 A023554 A222629
Adjacent sequences: A140063 A140064 A140065 * A140067 A140068 A140069


KEYWORD

nonn,easy


AUTHOR

Gary W. Adamson, May 03 2008


EXTENSIONS

More terms from R. J. Mathar and Emeric Deutsch, May 06 2008


STATUS

approved



