login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140066 (5n^2 - 11n + 8)/2. 2
1, 3, 10, 22, 39, 61, 88, 120, 157, 199, 246, 298, 355, 417, 484, 556, 633, 715, 802, 894, 991, 1093, 1200, 1312, 1429, 1551, 1678, 1810, 1947, 2089, 2236, 2388, 2545, 2707, 2874, 3046, 3223, 3405, 3592, 3784 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Binomial transform of [1, 2, 5, 0, 0, 0,...].

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000

Index entries for sequences related to linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

A007318 * [1, 2, 5, 0, 0, 0,...].

a(n)=A000217(n)+4*A000217(n-2). O.g.f.: x*(1+4x^2)/(1-x)^3. - R. J. Mathar, May 06 2008

a(n)=(8-11n+5n^2)/2. - Emeric Deutsch, May 07 2008

Ogf([1,3,10,22,39,61,88,120,157,199,246,298,355,417]) = (4*x^2 + 1)/(-x^3 + 3*x^2 - 3*x + 1) - Alexander R. Povolotsky, May 06 2008

a(n)=a(n-1)+5*n-8 (with a(1)=1) [From Vincenzo Librandi, Nov 24 2010]

a(1)=1, a(2)=3, a(3)=10, a(n)=3*a(n-1)-3*a(n-2)+a(n-3) [From Harvey P. Dale, Jan 28 2012]

EXAMPLE

a(4) = 22 = (1, 3, 3, 1) dot (1, 2, 5, 0) = (1, + 6 + 15 + 0).

MAPLE

seq((8-11*n+5*n^2)*1/2, n=1..40); - Emeric Deutsch, May 07 2008

MATHEMATICA

Table[(5n^2-11n+8)/2, {n, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 3, 10}, 40] (* Harvey P. Dale, Jan 28 2012 *)

CROSSREFS

Sequence in context: A190092 A174459 A122795 * A006503 A023554 A222629

Adjacent sequences:  A140063 A140064 A140065 * A140067 A140068 A140069

KEYWORD

nonn,easy

AUTHOR

Gary W. Adamson, May 03 2008

EXTENSIONS

More terms from R. J. Mathar and Emeric Deutsch, May 06 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 1 12:17 EDT 2014. Contains 247510 sequences.