login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140066 (5n^2 - 11n + 8)/2. 2
1, 3, 10, 22, 39, 61, 88, 120, 157, 199, 246, 298, 355, 417, 484, 556, 633, 715, 802, 894, 991, 1093, 1200, 1312, 1429, 1551, 1678, 1810, 1947, 2089, 2236, 2388, 2545, 2707, 2874, 3046, 3223, 3405, 3592, 3784 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Binomial transform of [1, 2, 5, 0, 0, 0,...].

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

A007318 * [1, 2, 5, 0, 0, 0,...].

a(n)=A000217(n)+4*A000217(n-2). O.g.f.: x*(1+4x^2)/(1-x)^3. - R. J. Mathar, May 06 2008

a(n)=(8-11n+5n^2)/2. - Emeric Deutsch, May 07 2008

Ogf([1,3,10,22,39,61,88,120,157,199,246,298,355,417]) = (4*x^2 + 1)/(-x^3 + 3*x^2 - 3*x + 1) - Alexander R. Povolotsky, May 06 2008

a(n)=a(n-1)+5*n-8 (with a(1)=1) [From Vincenzo Librandi, Nov 24 2010]

a(1)=1, a(2)=3, a(3)=10, a(n)=3*a(n-1)-3*a(n-2)+a(n-3) [From Harvey P. Dale, Jan 28 2012]

EXAMPLE

a(4) = 22 = (1, 3, 3, 1) dot (1, 2, 5, 0) = (1, + 6 + 15 + 0).

MAPLE

seq((8-11*n+5*n^2)*1/2, n=1..40); - Emeric Deutsch, May 07 2008

MATHEMATICA

Table[(5n^2-11n+8)/2, {n, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 3, 10}, 40] (* Harvey P. Dale, Jan 28 2012 *)

CROSSREFS

Sequence in context: A190092 A174459 A122795 * A006503 A248851 A023554

Adjacent sequences:  A140063 A140064 A140065 * A140067 A140068 A140069

KEYWORD

nonn,easy

AUTHOR

Gary W. Adamson, May 03 2008

EXTENSIONS

More terms from R. J. Mathar and Emeric Deutsch, May 06 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 11:12 EST 2016. Contains 278939 sequences.