login
A231554
G.f. satisfies: A(x) = (1 + 2*x*A(x))^2 * (2 + A(x)) / 3.
9
1, 6, 54, 588, 7116, 92016, 1244928, 17405520, 249486480, 3646632288, 54146466528, 814458834432, 12384344444160, 190052162396160, 2939737725858816, 45785756862006528, 717416350525430016, 11301288605493981696, 178873923678771712512, 2843246259040708414464
OFFSET
0,2
LINKS
Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
FORMULA
G.f. A(x) satisfies:
(1) A(x) = exp( x*(2*A(x) + A(x)^2) + Integral(2*A(x) + A(x)^2 dx) ).
(2) A(x) = (1/x)*Series_Reversion( x*(1-2*x-2*x^2)/(1+2*x)^2 ).
(3) A(x) = 1 + 2*x*A(x)*(2 + A(x))*(1 + x*A(x)).
(4) A(x) = 1 + Sum_{n>=2} (-2)^(n-2) * 3*n * x^(n-1) * A(x)^n.
D-finite Recurrence: n*(n+1)*(5*n-7)*a(n) = n*(90*n^2 - 171*n + 67)*a(n-1) - (75*n^3 - 255*n^2 + 254*n - 72)*a(n-2) + 8*(n-3)*(2*n-3)*(5*n-2)*a(n-3). - Vaclav Kotesovec, Dec 29 2013
a(n) ~ 2^(5*n-4/3) / (n^(3/2) * sqrt(Pi*s) * r^n), where r = 1.862506043468007499... is the root of the equation -2048 + 1152*r - 30*r^2 + r^3 = 0 and s = 0.0684490196162931593... is the root of the equation -125 + 386700*s^3 + 9529446*s^6 + 134217728*s^9 = 0. - Vaclav Kotesovec, Dec 29 2013
EXAMPLE
G.f.: A(x) = 1 + 6*x + 54*x^2 + 588*x^3 + 7116*x^4 + 92016*x^5 +...
Related expansions.
(1 + 2*x*A(x))^2 = 1 + 4*x + 28*x^2 + 264*x^3 + 2928*x^4 + 35760*x^5 +...
(2 + A(x))/3 = 1 + 2*x + 18*x^2 + 196*x^3 + 2372*x^4 + 30672*x^5 +...
2*A(x) + A(x)^2 = 3 + 24*x + 252*x^2 + 3000*x^3 + 38436*x^4 + 516960*x^5 +...
log(A(x)) = 6*x + 72*x^2/2 + 1008*x^3/3 + 15000*x^4/4 + 230616*x^5/5 +...
MATHEMATICA
CoefficientList[1/x*InverseSeries[Series[x*(1-2*x-2*x^2)/(1+2*x)^2, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Dec 29 2013 *)
PROG
(PARI) {a(n)=polcoeff((serreverse(x*(1-2*x-2*x^2)/(1+2*x)^2 +x^2*O(x^n))/x), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); for(i=1, n, A=exp(x*(2*A+A^2)+intformal(2*A+A^2 +x*O(x^n)))); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); for(i=1, n, A=1+2*x*A*(2+A)*(1+x*A) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 10 2013
STATUS
approved