login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228966
G.f. satisfies: A(x) = (1 + x*A(x))^2 * (1 + A(x)) / 2.
9
1, 4, 26, 208, 1858, 17764, 177842, 1840672, 19536546, 211483556, 2325884778, 25915289008, 291914007042, 3318712168516, 38030817789154, 438833757057344, 5094403323613762, 59458030569218756, 697263250712144058, 8211774425030092944, 97084082739501794626
OFFSET
0,2
LINKS
Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
FORMULA
G.f. A(x) satisfies:
(1) A(x) = exp( x*(A(x) + A(x)^2) + Integral(A(x) + A(x)^2 dx) ).
(2) A(x) = (1/x)*Series_Reversion( x*(1-2*x-x^2)/(1+x)^2 ).
(3) A(x) = 1 + x*A(x)*(1 + A(x))*(2 + x*A(x)).
(4) A(x) = 1 + Sum_{n>=2} (-1)^n * 2*n * x^(n-1) * A(x)^n.
Recurrence: 2*n*(n+1)*(29*n-39)*a(n) = n*(754*n^2 - 1391*n + 519)*a(n-1) - (203*n^3 - 679*n^2 + 660*n - 180)*a(n-2) + (n-3)*(2*n-3)*(29*n-10)*a(n-3). - Vaclav Kotesovec, Dec 21 2013
a(n) ~ 1/174*sqrt(87)*sqrt((8946558 + 86826*sqrt(87))^(1/3)*((8946558 + 86826*sqrt(87))^(2/3) + 42978 + 174*(8946558 + 86826*sqrt(87))^(1/3))) / ((8946558 + 86826*sqrt(87))^(1/3) * sqrt(Pi)) * 6^(-n)*((16046 + 174*sqrt(87))^(2/3) + 634 + 26*(16046 + 174*sqrt(87))^(1/3))^n*(16046 + 174*sqrt(87))^(-n/3) * (1/n)^(3/2). - Vaclav Kotesovec, Dec 21 2013
EXAMPLE
G.f.: A(x) = 1 + 4*x + 26*x^2 + 208*x^3 + 1858*x^4 + 17764*x^5 +...
Related expansions.
(1 + x*A(x))^2 = 1 + 2*x + 9*x^2 + 60*x^3 + 484*x^4 + 4340*x^5 +...
(1 + A(x))/2 = 1 + 2*x + 13*x^2 + 104*x^3 + 929*x^4 + 8882*x^5 +...
A(x) + A(x)^2 = 2 + 12*x + 94*x^2 + 832*x^3 + 7914*x^4 + 78972*x^5 +...
log(A(x)) = 4*x + 36*x^2/2 + 376*x^3/3 + 4160*x^4/4 + 47484*x^5/5 +...
MATHEMATICA
CoefficientList[InverseSeries[Series[x*(1-2*x-x^2)/(1+x)^2, {x, 0, 20}], x]/x, x] (* Vaclav Kotesovec, Dec 21 2013 *)
PROG
(PARI) {a(n)=polcoeff((serreverse(x*(1-2*x-x^2)/(1+x)^2 +x^2*O(x^n))/x), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); for(i=1, n, A=exp(x*(A+A^2)+intformal(A+A^2 +x*O(x^n)))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); for(i=1, n, A=1+x*A*(1+A)*(2+x*A) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 10 2013
STATUS
approved