OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..800
FORMULA
a(n) = Sum_{k=0..2} A245667(n,k).
a(n) ~ 3^(3*n-1/2) / (5^(3/2) * Pi * 2^(n-3) * n^2). - Vaclav Kotesovec, Sep 11 2014
EXAMPLE
a(0) = [].
a(1) = [0].
a(2) = [0,0], [0,1], [1,0], [1,1].
a(3) = [0,0,0], [0,0,1], [0,0,2], [0,1,0], [0,1,1], [0,2,0], [0,2,1], [0,2,2], [1,0,0], [1,0,1], [1,0,2], [1,1,0], [1,1,1], [1,1,2], [1,2,0], [1,2,1], [1,2,2], [2,0,0], [2,0,1], [2,0,2], [2,1,0], [2,1,1], [2,1,2], [2,2,0], [2,2,1], [2,2,2].
MAPLE
a:= proc(n) option remember; `if`(n<3, [1, 1, 4][n+1],
((7324*n^4-36350*n^3+58408*n^2-36126*n+8352) *a(n-1)
-3*(n-3)*(2083*n^3-5374*n^2+2979*n+816) *a(n-2)
-63*(n-3)*(n-4)*(3*n-7)*(3*n-8) *a(n-3)) /
(4*n*(n-2)*(n+1)*(127*n-261)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Mar 15 2014
MATHEMATICA
b[n_, l_] := b[n, l] = If[n == 0, 1, Sum[b[n-1, Table[Min[l[[j]], If[j == 1 || l[[j-1]] < i, i, l[[j]]]], {j, 1, Length[l]}]], {i, 1, l[[-1]]}]];
A[n_, k_] := A[n, k] = If[k == 0, If[n == 0, 1, 0], b[n, Array[n&, k]]];
T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k-1]];
a[n_] := Sum[T[n, k], {k, 0, 2}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 29 2017, after Alois P. Heinz (cf. A245667) *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Chad Brewbaker, Mar 14 2014
EXTENSIONS
a(8)-a(11) from Giovanni Resta, Mar 14 2014
a(12)-a(21) from Alois P. Heinz, Mar 15 2014
STATUS
approved