login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046172 Indices of pentagonal numbers (A000326) that are also squares (A000290). 9
1, 81, 7921, 776161, 76055841, 7452696241, 730288175761, 71560788528321, 7012226987599681, 687126683996240401, 67331402804643959601, 6597790348171111800481, 646516122717964312487521, 63351982236012331511976561, 6207847743006490523861215441 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

if P_x = y^2 is a pentagonal number that is also a square, the least both pentagonal and square number that is greater as P_x, is P_(49*x + 40*y - 8) = (60*x + 49*y - 10)^2 (in fact, P_(49*x + 40*y - 8) - (60*x + 49*y - 10)^2 = 1.5*x^2 - 0.5*x - y^2). - Richard Choulet, Apr 28 2009

a(n)*(3*a(n)-1)/2 = m*m is equivalent to the Pell equation (6*a(n)-1)^2 - 6*(2*m)^2 = 1 or x(n)^2 - 6*y(n)^2 = 1. - Paul Weisenhorn, May 15 2009

As n increases, this sequence is approximately geometric with common ratio r = lim_{n -> Infinity} a(n)/a(n-1) = (sqrt(2) + sqrt(3))^4 = 49 + 20*sqrt(6). - Ant King, Nov 07 2011

Numbers n such that the n-th pentagonal number is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 11 2014

Indices of pentagonal numbers (A000326) that are also centered octagonal numbers (A016754). - Colin Barker, Jan 11 2015

LINKS

Colin Barker, Table of n, a(n) for n = 1..503

L. Euler, De solutione problematum diophanteorum per numeros integros, par. 21

W. Sierpiński, Sur les nombres pentagonaux, Bull. Soc. Roy. Sci. Liege 33 (1964) 513-517.

Eric Weisstein's World of Mathematics, Pentagonal Square Number.

Index entries for linear recurrences with constant coefficients, signature (99,-99,1).

FORMULA

a(n) = 98*a(n-1) - a(n-2) - 16; g.f.: x*(1 - 18*x + x^2)/((1-x)*(1 - 98*x + x^2)). - Warut Roonguthai Jan 05 2001 - Corrected by Colin Barker, Jan 11 2015

a(n+1) = 49*a(n) - 8 + 10*sqrt(8*(3a(n)^2 - a(n)) with a(1) = 1. - Richard Choulet, Apr 28 2009

a(n) = 1/6+((5 + 2*sqrt(6))^(2*n+1)/12) + ((5 - 2*sqrt(6))^(2*n+1)/12) for n>=0. - Richard Choulet, Apr 29 2009

From Paul Weisenhorn, May 15 2009: (Start)

x(n+2) = 98*x(n+1)-x(n) with x(1)=5, x(2)=485;

y(n+2) = 98*y(n+1)-y(n) with y(n)=A046173(n)*2;

m(n+2) = 98*m(n+1)-m(n) with m(n)=A046173(n);

a(n) = A072256(n)^2.

(End)

a(n) = b(n)*b(n), b(n) = 10*b(n-1)- b(n-2), b(1)=1, b(2)=9, b(n)=((5 + sqrt(24))^n - (5 - sqrt(24))^n)/(2*sqrt(24)). - Sture Sjöstedt, Sep 21 2009

From Ant King, Nov 07 2011: (Start)

a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3).

a(n) = ceiling(1/12*(sqrt(3) + sqrt(2))^(4*n-2)).

(End)

MATHEMATICA

LinearRecurrence[{99, -99, 1}, {1, 81, 7921}, 13] (* Ant King, Nov 07 2011 *)

CROSSREFS

Cf. A036353, A046173.

Cf. A000217, A000290, A000326, A251914, A248205.

Sequence in context: A205056 A186132 A206504 * A123847 A115443 A186527

Adjacent sequences:  A046169 A046170 A046171 * A046173 A046174 A046175

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 15:08 EST 2016. Contains 278945 sequences.