login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046172 Indices of pentagonal numbers (A000326) that are also squares (A000290). 9
1, 81, 7921, 776161, 76055841, 7452696241, 730288175761, 71560788528321, 7012226987599681, 687126683996240401, 67331402804643959601, 6597790348171111800481, 646516122717964312487521, 63351982236012331511976561, 6207847743006490523861215441 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

if P_x = y^2 is a pentagonal number that is also a square, the least both pentagonal and square number that is greater as P_x, is P_(49*x + 40*y - 8) = (60*x + 49*y - 10)^2 (in fact, P_(49*x + 40*y - 8) - (60*x + 49*y - 10)^2 = 1.5*x^2 - 0.5*x - y^2). - Richard Choulet, Apr 28 2009

a(n)*(3*a(n)-1)/2 = m*m is equivalent to the Pell equation (6*a(n)-1)^2 - 6*(2*m)^2 = 1 or x(n)^2 - 6*y(n)^2 = 1. - Paul Weisenhorn, May 15 2009

As n increases, this sequence is approximately geometric with common ratio r = lim_{n -> Infinity} a(n)/a(n-1) = (sqrt(2) + sqrt(3))^4 = 49 + 20*sqrt(6). - Ant King, Nov 07 2011

Numbers n such that the n-th pentagonal number is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 11 2014

Indices of pentagonal numbers (A000326) that are also centered octagonal numbers (A016754). - Colin Barker, Jan 11 2015

LINKS

Colin Barker, Table of n, a(n) for n = 1..503

L. Euler, De solutione problematum diophanteorum per numeros integros, par. 21

W. Sierpiński, Sur les nombres pentagonaux, Bull. Soc. Roy. Sci. Liege 33 (1964) 513-517.

Eric Weisstein's World of Mathematics, Pentagonal Square Number.

Index to sequences with linear recurrences with constant coefficients, signature (99,-99,1).

FORMULA

a(n) = 98*a(n-1) - a(n-2) - 16; g.f.: x*(1 - 18*x + x^2)/((1-x)*(1 - 98*x + x^2)). - Warut Roonguthai Jan 05 2001 - Corrected by Colin Barker, Jan 11 2015

a(n+1) = 49*a(n) - 8 + 10*sqrt(8*(3a(n)^2 - a(n)) with a(1) = 1. - Richard Choulet, Apr 28 2009

a(n) = 1/6+((5 + 2*sqrt(6))^(2*n+1)/12) + ((5 - 2*sqrt(6))^(2*n+1)/12) for n>=0. - Richard Choulet, Apr 29 2009

From Paul Weisenhorn, May 15 2009: (Start)

x(n+2) = 98*x(n+1)-x(n) with x(1)=5, x(2)=485;

y(n+2) = 98*y(n+1)-y(n) with y(n)=A046173(n)*2;

m(n+2) = 98*m(n+1)-m(n) with m(n)=A046173(n);

a(n) = A072256(n)^2.

(End)

a(n) = b(n)*b(n), b(n) = 10*b(n-1)- b(n-2), b(1)=1, b(2)=9, b(n)=((5 + sqrt(24))^n - (5 - sqrt(24))^n)/(2*sqrt(24)). - Sture Sjöstedt, Sep 21 2009

From Ant King, Nov 07 2011: (Start)

a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3).

a(n) = ceiling(1/12*(sqrt(3) + sqrt(2))^(4*n-2)).

(End)

MATHEMATICA

LinearRecurrence[{99, -99, 1}, {1, 81, 7921}, 13] (* Ant King, Nov 07 2011 *)

CROSSREFS

Cf. A036353, A046173.

Cf. A000217, A000290, A000326, A251914, A248205.

Sequence in context: A205056 A186132 A206504 * A123847 A115443 A186527

Adjacent sequences:  A046169 A046170 A046171 * A046173 A046174 A046175

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 29 06:09 EDT 2015. Contains 257925 sequences.