The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072256 a(n) = 10*a(n-1) - a(n-2) for n > 1, a(0) = a(1) = 1. 28
 1, 1, 9, 89, 881, 8721, 86329, 854569, 8459361, 83739041, 828931049, 8205571449, 81226783441, 804062262961, 7959395846169, 78789896198729, 779939566141121, 7720605765212481, 76426118085983689, 756540575094624409 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Any k in the sequence is followed by 5*k + 2sqrt{2(3*k^2 - 1)}. Gives solutions for x in 3*x^2 - 2*y^2 = 1. Corresponding y is given by A054320(n-1). [corrected by Jon E. Schoenfield, Jun 08 2018] a(n) = L(n-1,10), where L is defined as in A108299; see also A054320 for L(n,-10). - Reinhard Zumkeller, Jun 01 2005 Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5,6,7,8,9} which do not end in 0. - Tanya Khovanova, Jan 10 2007 a(n) = A138288(n-1) for n > 0. - Reinhard Zumkeller, Mar 12 2008 For n>= 2, a(n) equals the permanent of the (2n-2)X(2n-2) tridiagonal matrix with sqrt(8)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011 Except for the first term, positive values of x (or y) satisfying x^2 - 10xy + y^2 + 8 = 0. - Colin Barker, Feb 09 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Bruno Deschamps, Sur les bonnes valeurs initiales de la suite de Lucas-Lehmer, Journal of Number Theory, Volume 130, Issue 12, December 2010, Pages 2658-2670. S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 283). Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13. Tanya Khovanova, Recursive Sequences J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. Index entries for linear recurrences with constant coefficients, signature (10,-1). FORMULA a(n) = (3-sqrt(6))/6 * (5+2*sqrt(6))^n + (3+sqrt(6))/6 * (5-2*sqrt(6))^n. a(n) = {2*A031138(n) + 1}/3 = sqrt(2*A054320(n)^2 + 1)/3), n>=1. a(n) = U(n-1, 5)-U(n-2, 5) = T(2*n-1, sqrt(3))/sqrt(3) with Chebyshev's U- and T- polynomials and U(-1, x) := 0, U(-2, x) := -1, T(-1, x) := x. G.f.: (1-9*x)/(1-10*x+x^2). For all members x of the sequence, 6*x^2 - 2 is a square. Lim. n -> Inf. a(n)/a(n-1) = 5 + 2*sqrt(6). - Gregory V. Richardson, Oct 10 2002 Let q(n, x)=sum(i=0, n, x^(n-i)*binomial(2*n-i, i)); then q(n, 8)=a(n+1). - Benoit Cloitre, Nov 10 2002 a(n)*a(n+3) = 80 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004 a(n) = sqrt(A046172(n)). - Paul Weisenhorn, May 15 2009 a(n) = ceiling(((3-sqrt(6))*(5+2*sqrt(6))^n)/6). - Paul Weisenhorn, May 23 2020 MAPLE seq( simplify(ChebyshevU(n, 5) -9*ChebyshevU(n-1, 5)), n=0..20); # G. C. Greubel, Jan 14 2020 MATHEMATICA a[n_]:= a[n]= 10a[n-1] -a[n-2]; a=a=1; Table[ a[n], {n, 0, 20}] CoefficientList[Series[(1-9x)/(1-10x+x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *) Table[ChebyshevU[n, 5] -9*ChebyshevU[n-1, 5], {n, 0, 20}] (* G. C. Greubel, Jan 14 2020 *) PROG (Sage) [lucas_number1(n, 10, 1)-lucas_number1(n-1, 10, 1) for n in range(0, 20)] # Zerinvary Lajos, Nov 10 2009 (MAGMA) [n le 2 select 1 else 10*Self(n-1)-Self(n-2): n in [1..25]]; // Vincenzo Librandi, Feb 10 2014 (PARI) a(n)=([0, 1; -1, 10]^n*[1; 1])[1, 1] \\ Charles R Greathouse IV, May 10 2016 (PARI) vector(21, n, polchebyshev(n-1, 2, 5) -9*polchebyshev(n-2, 2, 5) ) \\ G. C. Greubel, Jan 14 2020 (GAP) a:=[1, 1];; for n in [3..20] do a[n]:=10*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2020 CROSSREFS Cf. A031138, A046172, A054320. Row 10 of array A094954. First differences of A004189. Sequence in context: A198967 A320093 A015584 * A138288 A059482 A109002 Adjacent sequences:  A072253 A072254 A072255 * A072257 A072258 A072259 KEYWORD nonn,easy AUTHOR Lekraj Beedassy, Jul 08 2002 EXTENSIONS Edited by Robert G. Wilson v, Jul 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 6 03:02 EDT 2020. Contains 335475 sequences. (Running on oeis4.)