login
A046170
Number of self-avoiding walks on a 2-D lattice of length n which start at the origin, take first step in the {+1,0} direction and whose vertices are always nonnegative in x and y.
3
1, 2, 5, 12, 30, 73, 183, 456, 1151, 2900, 7361, 18684, 47652, 121584, 311259, 797311, 2047384, 5260692, 13542718, 34884239, 89991344, 232282110, 600281932, 1552096361, 4017128206, 10401997092, 26957667445, 69892976538, 181340757857, 470680630478, 1222433229262, 3175981845982
OFFSET
1,2
LINKS
Stephen A. Silver, C program
Eric Weisstein's World of Mathematics, Self-Avoiding Walk
FORMULA
a(n) = A038373(n)/2. - Siqi Wang, Jul 15 2022
CROSSREFS
Sequence in context: A101911 A052109 A157748 * A369145 A262320 A062423
KEYWORD
nonn,walk
EXTENSIONS
More terms from Stephen A. Silver
More terms from Siqi Wang, Jul 15 2022
STATUS
approved