OFFSET
0,11
LINKS
Peter H. N. Luschny, An introduction to the Bernoulli function, arXiv:2009.06743 [math.HO], 2020.
EXAMPLE
[0] 1
[1] 0, 1
[2] -1, 0, 1
[3] 0, -1, 0, 1
[4] 7, 0, -2, 0, 1
[5] 0, 7, 0, -10, 0, 1
[6] -31, 0, 7, 0, -5, 0, 1
[7] 0, -31, 0, 49, 0, -7, 0, 1
[8] 127, 0, -124, 0, 98, 0, -28, 0, 1
[9] 0, 381, 0, -124, 0, 294, 0, -12, 0, 1
MAPLE
Bcn := n -> 2^n*bernoulli(n, 1/2):
Bcp := n -> add(binomial(n, k)*Bcn(k)*x^(n-k), k=0..n):
polycoeff := p -> seq(numer(coeff(p, x, k)), k = 0..degree(p, x)):
Trow := n -> polycoeff(Bcp(n)): seq(print(Trow(n)), n=0..9);
CROSSREFS
KEYWORD
AUTHOR
Peter Luschny, Jul 25 2020
STATUS
approved