login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002105 Reduced tangent numbers: 2^n*(2^{2n} - 1)*|B_{2n}|/n, where B_n = Bernoulli numbers.
(Formerly M3655 N1487)
39
1, 1, 4, 34, 496, 11056, 349504, 14873104, 819786496, 56814228736, 4835447317504, 495812444583424, 60283564499562496, 8575634961418940416, 1411083019275488149504, 265929039218907754399744, 56906245479134057176170496, 13722623393637762299131396096, 3704005473270641755597685653504 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Comments from R. L. Graham, Apr 25 2006 and Jun 08 2006: "This sequence also gives the number of ways of arranging 2n tokens in a row, with 2 copies of each token from 1 through n, such that the first token is a 1 and between every pair of tokens labeled i (i=1..n-1) there is exactly one token labeled i+1.

"For example, for n=3, there are 4 possibilities: 123123, 121323, 132312 and 132132 and indeed a(3) = 4. This is the work of my Ph. D. student Nan Zang. See also A117513, A117514, A117515.

"Develin and Sullivant give another occurrence of this sequence and show that their numbers have the same generating function, although they were unable to find a 1-1-mapping between their problem and Poupard's."

The sequence 1,0,1,0,4,0,34,0,496,0,11056, ... counts increasing complete binary trees with e.g.f. sec^2(x/sqrt 2). - Wenjin Woan, Oct 03 2007

a(n) = number of increasing full binary trees on vertex set [2n-1] with the left-largest property: the largest descendant of each non-leaf vertex occurs in its left subtree (Poupard). The first Mathematica recurrence below counts these trees by number 2k-1 of vertices in the left subtree of the root: the root is necessarily labeled 1 and n necessarily occurs in the left subtree and so there are Binomial[2n-3,2k-2] ways to choose the remaining labels for the left subtree. - David Callan, Nov 29 2007

Number of bilabeled unordered increasing trees with 2n labels. - Markus Kuba, Nov 18 2014

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

H. M. Terrill and E. M. Terrill, Tables of numbers related to the tangent coefficients, J. Franklin Inst., 239 (1945), 64-67.

LINKS

T. D. Noe, Table of n, a(n) for n=1..100

G. E. Andrews, J. Jimenez-Urroz, K. Ono, q-series identities and values of certain L-functions, Duke Math J. Volume 108, Number 3 (2001), 395-419. [From Peter Bala, Mar 24 2009]

R. C. Archibald, Review of Terrill-Terrill paper, Math. Comp., 1 (1945), pp. 385-386.

P. Bala, A continued fraction expansion related to A002105

Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.

R. B. Brent, Generalizing Tuenter's Binomial Sums, J. Int. Seq. 18 (2015) # 15.3.2.

M. P. Develin and S. P. Sullivant, Markov Bases of Binary Graph Models, Annals of Combinatorics 7 (2003) 441-466.

D. Foata, G-N. Han, The doubloon polynomial triangle, Ram. J. 23 (2010), 107-126

Dominique Foata and Guo-Niu Han, Doubloons and new q-tangent numbers, Quart. J. Math. 62 (2) (2011) 417-432

D. Foata and G.-N. Han, Tree Calculus for Bivariable Difference Equations, 2012. - From N. J. A. Sloane, Feb 02 2013

R. L. Graham and Nan Zang, Enumerating split-pair arrangements, J. Combin. Theory Ser. A 115 (2008), no. 2, 293-303.

Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.

Markus Kuba, Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], 2014.

E. Norton, Symplectic Reflection Algebras in Positive Characteristic as Ore Extensions, arXiv preprint arXiv:1302.5411 [math.RA], 2013.

C. Poupard, Deux proprietes des arbres binaires ordonnes stricts, European J. Combin., 10 (1989), 369-374.

M. Safaryan, Problem 11725, Amer. Math. Monthly, 120 (2013), 661.

H. M. Terrill and E. M. Terrill, Tables of numbers related to the tangent coefficients, J. Franklin Inst., 239 (1945), 64-67. [Annotated scanned copy]

A. Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, arXiv preprint arXiv:1107.2938 [math.NT], 2011.

Index entries for sequences related to Bernoulli numbers.

FORMULA

E.g.f.: 2*log(sec(x / sqrt(2))) = Sum_{n>0} a(n) * x^(2*n) / (2*n)!. - Michael Somos, Jun 22 2002

A000182(n) = 2^(n-1) * a(n). - Michael Somos, Jun 22 2002

a(n) = 2^(n-1)/n * A110501(n). - Don Knuth, Jan 16 2007

a(n+1) = Sum_{k =0..n} A094665(n, k). - Philippe Deléham, Jun 11 2004

O.g.f.: A(x) = x/(1-x/(1-3*x/(1-6*x/(1-10*x/(1-15*x/(... -n*(n+1)/2*x/(1 - ...))))))) (continued fraction). - Paul D. Hanna, Oct 07 2005

sqrt(2) tan( x/sqrt(2)) = Sum_(n>=0) (x^(2n+1)/(2n+1)!) a_n. - Dominique Foata and Guo-Niu Han, Oct 24 2008

Basic hypergeometric generating function: Sum_{n>=0} Product {k = 1..n} (1-exp(-2*k*t))/Product {k = 1..n} (1+exp(-2*k*t)) = 1 + t + 4*t^2/2! + 34*t^3/3! + 496*t^4/4! + ... [Andrews et al., Theorem 4]. For other sequences with generating functions of a similar type see A000364, A000464, A002439, A079144 and A158690. - Peter Bala, Mar 24 2009

E.g.f.: Sum_{n>=0} Product_{k=1..n} tanh(k*x) = Sum_{n>=0} a(n)*x^n/n!. - Paul D. Hanna, May 11 2010

a(n)=(-1)^(n+1)*sum(j!*stirling2(2*n+1,j)*2^(n+1-j)*(-1)^(j),j,1,2*n+1), n>=0. - Vladimir Kruchinin, Aug 23 2010

a(n) = upper left term in M^n, a(n+1) = sum of top row terms in M^n; where M = the infinite square production matrix:

1, 3, 0,  0,  0, 0, 0, ...

1, 3, 6,  0,  0, 0, 0, ...

1, 3, 6, 10,  0, 0, 0, ...

1, 3, 6, 10, 15, 0, 0, ... - Gary W. Adamson, Jul 14 2011

E.g.f. A(x) satisfies differential equation A''(x)=exp(A(x)). - Vladimir Kruchinin, Nov 18 2011

E.g.f.: For E(x)=sqrt(2)* tan( x/sqrt(2))=x/G(0); G(k)= 4*k + 1 - x^2/(8*k + 6 - x^2/G(k+1)); (from continued fraction Lambert's, 2-step). - Sergei N. Gladkovskii, Jan 14 2012

a(n) = (-1)^n*2^(n+1)*Li_{1-2*n}(-1). (See also the Mathematica prog. by Vladimir Reshetnikov.) - Peter Luschny, Jun 28 2012

G.f.: 1/G(0) where G(k) = 1 - x*( 4*k^2 + 4*k + 1 ) - x^2*(k+1)^2*( 4*k^2 + 8*k + 3)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 14 2013

G.f.: 1/Q(0), where Q(k)= 1 - (k+1)*(k+2)/2*x/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013

G.f.: 1/G(0)/sqrt(x) -1/sqrt(x), where G(k)= 1 - sqrt(x)*(2*k+1)/(1 + sqrt(x)*(2*k+1)/(1 + sqrt(x)*(k+1)/(1 - sqrt(x)*(k+1)/G(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Jul 07 2013

log(2) - 1/1 + 1/2 - 1/3 + ... + (-1)^n / n = (-1)^n / 2 * (1/n - 1 / (2*n^2) + 1 / (2*n^2)^2 - 4 / (2*n^2)^3 + ... + (-1)^k * a(k) / (2*n^2)^k + ...) asymptotic expansion. - Michael Somos, Sep 07 2013

G.f.: T(0), where T(k) = 1-x*(k+1)*(k+2)/(x*(k+1)*(k+2)-2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 24 2013

a(n) ~ 2^(3*n+2) * n^(2*n-1/2) / (exp(2*n) * Pi^(2*n-1/2)). - Vaclav Kotesovec, Nov 03 2014

From Peter Bala, Sep 10 2015: (Start)

The e.g.f. A(x) = sqrt(2)*tan(x/sqrt(2)) satisfies A''(x) = A(x)*A'(x), hence the recurrence a(0) = 0, a(1) = 1, else a(n) = Sum_{i = 0..n-2} binomial(n-2,i)*a(i)*a(n-1-i) for the aerated sequence [0,1,0,1,0,4,0,34,0,496,...].

Note, the same recurrence, but with the initial conditions a(0) = 1 and a(1) = 1, produces the sequence [1,1,1,2,5,16,61,272,...] = A000111. (End)

a(n) = polygamma(2*n-1, 1/2)*2^(2-n)/Pi^(2*n). - Vladimir Reshetnikov, Oct 18 2015

E.g.f.: sqrt(2)*tan(x/sqrt(2)) = Sum_{n>0} a(n) * x^(2*n-1) / (2*n-1)!. - Michael Somos, Mar 05 2017

From Peter Bala, May 05 2017: (Start)

Let B(x) = A(x)/x = 1 + x + 4*x^2 + 34*x^3 + ... denote the shifted o.g.f. Then B(x) = 1/(1 + 2*x - 3*x/(1 - x/(1 + 2*x - 10*x/(1 - 6*x/(1 + 2*x - 21*x/(1 - 15*x/(1 + 2*x - 36*x/(1 - 28*x/(1 + 2*x - ...))))))))), where the coefficient sequence [3, 1, 10, 6, 21, 15, 36, 28, ...] in the partial numerators of the continued fraction is obtained by swapping adjacent triangular numbers. Cf. A079144.

It follows (by means of an equivalence transformation) that the second binomial transform of B(x), with g.f. equal to 1/(1 - 2*x)*B(x/(1 - 2*x)), has the S-fraction representation 1/(1 - 3*x/(1 - x/(1 - 10*x/(1 - 6*x/(1 - 21*x/(1 - 15*x/(1 - 36*x/(1 - 28*x/(1 - ...))))))))). Compare with the S-fraction representation of the g.f. A(x) given above by Hanna (dated Oct 7 2005). (End)

EXAMPLE

G.f. = x + x^2 + 4*x^3 + 34*x^4 + 496*x^5 + 11056*x^6 + 349504*x^7 + ...

MAPLE

S := proc(n, k) option remember; if k=0 then `if`(n=0, 1, 0) else S(n, k-1) + S(n-1, n-k) fi end: A002105 := n -> S(2*n-1, 2*n-1)/2^(n-1):

seq(A002105(i), i=1..16); # Peter Luschny, Jul 08 2012

MATHEMATICA

u[1] = 1; u[n_]/; n>=2 := u[n] = Sum[Binomial[2n-3, 2k-2]u[k]u[n-k], {k, n-1}]; Table[u[n], {n, 8}] (* Poupard and also Develin and Sullivant, give a different recurrence that involves a symmetric sum: v[1] = 1; v[n_]/; n>=2 := v[n] = 1/2 Sum[Binomial[2n-2, 2k-1]v[k]v[n-k], {k, n-1}] *) (*David Callan, Nov 29 2007 *)

a[n_] := (-1)^n 2^(n+1) PolyLog[1-2n, -1]; Array[a, 10] (* Vladimir Reshetnikov, Jan 23 2011 *)

Table[(-1)^(n+1)*2^n*(2^(2n)-1)*BernoulliB[2n]/n, {n, 1, 20}] (* Vaclav Kotesovec, Nov 03 2014 *)

eulerCF[f_, len_] := Module[{g}, g[len-1]=1; g[k_]:=g[k]=1-f[k]/(f[k]-1/g[k+1]); CoefficientList[g[0] + O[x]^len, x]]; A002105List[len_] := eulerCF[(1/2) x (#+1) (#+2)&, len]; A002105List[19] (* Peter Luschny, Aug 08 2015 after Sergei N. Gladkovskii *)

Table[PolyGamma[2n-1, 1/2] 2^(2-n)/Pi^(2n), {n, 1, 10}] (* Vladimir Reshetnikov, Oct 18 2015 *)

Table[EulerE[2n-1, 0] (-2)^n, {n, 1, 10}] (* Vladimir Reshetnikov, Oct 21 2015 *)

PROG

(PARI) {a(n) = if( n<1, 0, ((-2)^n - (-8)^n) * bernfrac(2*n) / n)}; /* Michael Somos, Jun 22 2002 */

(PARI) {a(n) = if( n<0, 0, (2*n)! * polcoeff( -2 * log( cos(x / quadgen(8) + O(x^(2*n + 1)))), 2*n))}; /* Michael Somos, Jul 17 2003 */

(PARI) {a(n) = if( n<0, 0, -(-2)^(n+1) * sum(i=1, 2*n, 2^-i * sum(j=1, i, (-1)^j * binomial( i-1, j-1) * j^(2*n - 1))))}; /* Michael Somos, Sep 07 2013 */

(PARI) {a(n)=local(CF=1+x*O(x^n)); if(n<1, return(0), for(k=1, n, CF=1/(1-(n-k+1)*(n-k+2)/2*x*CF)); return(Vec(CF)[n]))}  /* Paul D. Hanna */

(PARI) {a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, prod(k=1, m, tanh(k*X))); n!*polcoeff(Egf, n)} /* Paul D. Hanna, May 11 2010 */

(Sage) # Algorithm of L. Seidel (1877)

# n -> [a(1), ..., a(n)] for n >= 1.

def A002105_list(n) :

    D = [0]*(n+2); D[1] = 1

    R = []; z = 1/2; b = True

    for i in(0..2*n-1) :

        h = i//2 + 1

        if b :

            for k in range(h-1, 0, -1) : D[k] += D[k+1]

            z *= 2

        else :

            for k in range(1, h+1, 1) :  D[k] += D[k-1]

        b = not b

        if b : R.append(D[h]*z/h)

    return R

A002105_list(16) # Peter Luschny, Jun 29 2012

CROSSREFS

Row sums of A008301.

Cf. A000364, A000464, A002439, A079144, A158690.

Left edge of triangle A210108. Cf. A000111.

Sequence in context: A248654 A111169 A274244 * A198717 A198908 A207864

Adjacent sequences:  A002102 A002103 A002104 * A002106 A002107 A002108

KEYWORD

easy,nonn,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

Additional comments from Michael Somos, Jun 25 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 16:53 EST 2018. Contains 317412 sequences. (Running on oeis4.)