login
This site is supported by donations to The OEIS Foundation.

 

Logo

110 people attended OEIS-50 (videos, suggestions); annual fundraising drive to start soon (donate); editors, please edit! (stack is over 300), your editing is more valuable than any donation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000364 Euler (or secant or "Zig") numbers: e.g.f. (even powers only) sech(x)=1/cosh(x).
(Formerly M4019 N1667)
136
1, 1, 5, 61, 1385, 50521, 2702765, 199360981, 19391512145, 2404879675441, 370371188237525, 69348874393137901, 15514534163557086905, 4087072509293123892361, 1252259641403629865468285, 441543893249023104553682821, 177519391579539289436664789665 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Inverse Gudermannian gd^(-1)(x) = log(sec(x) + tan(x)) = log(tan(Pi/4 + x/2)) = atanh(sin(x)) = 2 * atanh(tan(x/2)) = 2 * atanh(csc(x) - cot(x)). - Michael Somos, Mar 19 2011

a(n) = number of downup permutations of [2n]. Example: a(2)=5 counts 4231, 4132, 3241, 3142, 2143. - David Callan, Nov 21 2011

a(n) = number of increasing full binary trees on vertices {0,1,2,...,2n} for which the leftmost leaf is labeled 2n. - David Callan, Nov 21 2011

a(n) = number of unordered increasing trees of size 2n+1 with only even degrees allowed and degree-weight generating function given by cosh(t). - Markus Kuba, Sep 13 2014

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 810; gives a version with signs: E_{2n} = (-1)^n*a(n) (this is A028296).

J. M. Borwein and D. M. Bailey, Mathematics by Experiment, Peters, Boston, 2004; p. 49

J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 141.

J. M. Borwein, P. B. Borwein and K. Dilcher, Pi, Euler numbers and asymptotic expansions, Amer. Math. Monthly, 96 (1989), 681-687.

G. Chrystal, Algebra, Vol. II, p. 342.

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.

H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 69.

L. Euler, Inst. Calc. Diff., Section 224.

Dominique Foata and Guo-Niu Han, Seidel Triangle Sequences and Bi-Entringer Numbers, November 20, 2013; http://www-irma.u-strasbg.fr/~foata/paper/pub123Seidel.pdf

D. Foata and M.-P. Schutzenberger, Nombres d'Euler et permutations alternantes, in J. N. Srivastava et al., eds., A Survey of Combinatorial Theory (North Holland Publishing Company, Amsterdam, 1973), pp. 173-187.

Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.

J. M. Hammersley, An undergraduate exercise in manipulation, Math. Scientist, 14 (1989), 1-23.

Knuth, D. E.; Buckholtz, Thomas J. Computation of tangent, Euler and Bernoulli numbers. Math. Comp. 21 1967 663-688.

D. H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Annals Math., 36 (1935), 637-649.

F. Luca and P. Stanica, On some conjectures on the monotonicity of some arithematical sequences, J. Combin. Number Theory 4 (2012) 1-10.

S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 444.

L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.

D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699.

Vladimir Shevelev, The number of permutations with prescribed up-down structure as a function of two variables, INTEGERS, 12 (2012), #A1.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.

M. A. Stern, Zur Theorie der Eulerschen Zahlen, J. Reine Angew. Math., 79 (1875), 67-98.

LINKS

N. J. A. Sloane, The first 100 Euler numbers: Table of n, a(n) for n = 0..99

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

J. L. Arregui, Tangent and Bernoulli numbers related to Motzkin and Catalan numbers by means of numerical triangles.

P. Barry, A Note on Three Families of Orthogonal Polynomials defined by Circular Functions, and Their Moment Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.7.2.  - From N. J. A. Sloane, Dec 27 2012

R. Bacher AND P. Flajolet, Pseudo-factorials, elliptic functions, and continued fractions, arXiv:0901.1379.

C. M. Bender and K. A. Milton, Continued fraction as a discrete nonlinear transform, arXiv:hep-th/9304052, 1993.

Richard P. Brent and David Harvey, Fast computation of Bernoulli, Tangent and Secant numbers, arXiv preprint arXiv:1108.0286, 2011

A. Bucur, J. Lopez-Bonilla, J. Robles-Garcia, A note on the Namias identity for Bernoulli numbers, Journal of Scientific Research (Banaras Hindu University, Varanasi), Vol. 56 (2012), 117-120.

K.-W. Chen, Algorithms for Bernoulli numbers and Euler numbers, J. Integer Sequences, 4 (2001), #01.1.6.

D. Dumont and J. Zeng, Polynomes d'Euler et les fractions continues de Stieltjes-Rogers, Ramanujan J. 2 (1998) 3, 387-410.

A. L. Edmonds and S, Klee, The combinatorics of hyperbolized manifolds, arXiv preprint arXiv:1210.7396, 2012. - From N. J. A. Sloane, Jan 02 2013

C. J. Fewster, D. Siemssen, Enumerating Permutations by their Run Structure, arXiv preprint arXiv:1403.1723, 2014

P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 144

Michael E. Hoffman, Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences, vol.6, no.1, #R21, (1999).

J. Lovejoy and K. Ono, Hypergeometric generating functions for values of Dirichlet and other L-functions, Proc. Nat. Acad. Sci., Vol. 100, No.12, 2003, 6904-6909. [From Peter Bala, Mar 24 2009]

J. Malenfant, Finite, Closed-form Expressions for the Partition Function and for Euler, Bernoulli, and Stirling Numbers, arxiv:1103.1585v6 [math.NT]

R. Mestrovic, A search for primes p such that Euler number E_{p-3} is divisible by p, arXiv preprint arXiv:1212.3602, 2012. - From N. J. A. Sloane, Jan 25 2013

Hisanori Mishima, Factorizations of Euler numbers n=0..78, n=80..106.

Simon Plouffe, The first 7153 Euler numbers (165 megs)

Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.

C. Radoux, Determinants de Hankel et theoreme de Sylvester

N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).

N. J. A. Sloane, A Famous Application of the Encyclopedia of Integer Sequence (Vugraph from a talk about the OEIS)

R. P. Stanley, Alternating permutations and symmetric functions

R. P. Stanley, Permutations

D. C. Vella, Explicit Formulas for Bernoulli and Euler Numbers, Integers 8(1), A1, 2008.

Sam Wagstaff, Prime divisors of the Bernoulli and Euler numbers

Eric Weisstein's World of Mathematics, Euler Number, Secant Number, Alternating Permutation.

Wolfram Research, Generating functions for E_n

Index entries for "core" sequences

Index entries for sequences related to boustrophedon transform

FORMULA

E.g.f.: Sum_{n >= 0} a(n) * x^(2*n) / (2*n)! = sec(x). - Michael Somos, Aug 15 2007

E.g.f.: Sum_{n >= 0} a(n) * x^(2*n+1) / (2*n+1)! = gd^(-1)(x). - Michael Somos, Aug 15 2007

E.g.f.: Sum_{n >= 0} a(n)*x^(2*n+1)/(2*n+1)! = 2*arctanh(cosec(x)-cotan(x)). - Ralf Stephan, Dec 16 2004

Pi/4 - [Sum_{k=0..n-1} (-1)^k/(2*k+1)] ~ (1/2)*[Sum_{k>=0} (-1)^k*E(k)/(2*n)^(2k+1)] for positive even n. [Borwein, Borwein, and Dilcher]

Let M_n be the n X n matrix M_n(i, j) = binomial(2*i, 2*(j-1)) = A086645(i, j-1); then for n>0, a(n) = det(M_n); example: det([1, 1, 0, 0; 1, 6, 1, 0; 1, 15, 15, 1; 1, 28, 70, 28 ]) = 1385. - Philippe Deléham, Sep 04 2005

This sequence is also (-1)^n*EulerE[2*n] or Abs[EulerE[2*n]]. - Paul Abbott (paul(AT)physics.uwa.edu.au), Apr 14 2006

a(n) = 2^n * E_n(1/2), where E_n(x) is an Euler polynomial.

a(k) = a(l) (mod 2^n) if and only if k=l (mod 2^n) (k and l are even). [Stern; see also Wagstaff and Sun]

E_k(3^(k+1)+1)/4=(3^k/2)*sum(j=0..2^n-1, (-1)^(j-1)*(2j+1)^k*[(3j+1)/2^n] (mod 2^n) where k is even and [x] is the greatest integer function. [Sun]

a(n) ~ 2^(n+2)*n!/Pi^(n+1) as n -> infinity.

a(n) = sum(k=0..n, A094665(n, k)*2^(n-k) ). - Philippe Deléham, Jun 10 2004

Recurrence: a(n) = -(-1)^n*sum(i=0..n-1, (-1)^i*a(i)*C(2*n, 2*i) ). - Ralf Stephan, Feb 24 2005

O.g.f.: 1/(1-x/(1-4*x/(1-9*x/(1-16*x/(...-n^2*x/(1-...)))))) (continued fraction due T. J. Stieltjes). - Paul D. Hanna, Oct 07 2005

a(n)=Integrate[Log[Tan[t/2]^2]^(2n),{t,0,Pi}]/Pi^(2n+1). - Logan Kleinwaks (kleinwaks(AT)alumni.princeton.edu), Mar 15 2007

Contribution from Peter Bala, Mar 24 2009: (Start)

Basic hypergeometric generating function: 2*exp(-t)*Sum {n = 0..inf} Product {k = 1..n} (1-exp(-(4*k-2)*t))*exp(-2*n*t)/Product {k = 1..n+1} (1+exp(-(4*k-2)*t)) = 1 + t + 5*t^2/2! + 61*t^3/3! + .... For other sequences with generating functions of a similar type see A000464, A002105, A002439, A079144 and A158690.

a(n) = 2*(-1)^n*L(-2*n), where L(s) is the Dirichlet L-function L(s) = 1 - 1/3^s + 1/5^s - + .... (End)

sum(n>=0, a(n)*z^(2*n)/(4*n)!! ) = Beta(1/2-z/(2*Pi),1/2+z/(2*Pi))/Beta(1/2,1/2) with Beta(z,w) the Beta function. - Johannes W. Meijer, Jul 06 2009

a(n)=sum(sum(binomial(k,m)*(-1)^(n+k)/(2^(m-1))*sum(binomial(m,j)*(2*j-m)^(2*n),j,0,m/2)*(-1)^(k-m),m,0,k),k,1,2*n), n>0. - Vladimir Kruchinin, Aug 05 2010

If n is prime, then a(n)==1 (mod 2*n). - Vladimir Shevelev, Sep 04 2010

From Peter Bala: (Start)

(1)... a(n) = (-1/4)^n*B(2*n,-1),

where {B(n,x)}n>=1 = [1,1+x,1+6*x+x^2,1+23*x+23*x^2+x^3,...] is the sequence of Eulerian polynomials of type B - see A060187. Equivalently,

(2)... a(n) = sum {k = 0..2*n} sum {j = 0..k} (-1)^(n-j) *binomial(2*n+1,k-j)*(j+1/2)^(2*n).

We also have

(3)... a(n) = 2*A(2*n,I)/(1+I)^(2*n+1),

where I = sqrt(-1) and where {A(n,x)}n>=1 = [x,x+x^2,x+4*x^2+x^3,...] denotes the sequence of Eulerian polynomials - see A008292. Equivalently,

(4)... a(n) = I*sum {k = 1..2*n} (-1)^(n+k)*k!*Stirling2(2*n,k) *((1+I)/2)^(k-1)

= I*sum {k = 1..2*n} (-1)^(n+k)*((1+I)/2)^(k-1) sum {j = 0..k}

(-1)^(k-j)*binomial(k,j)*j^(2*n).

Either this explicit formula for a(n) or (2) above may be used to obtain congruence results for a(n). For example, for prime p

(5a)... a(p) = 1 (mod p)

(5b)... a(2*p) = 5 (mod p)

and for odd prime p

(6a)... a((p+1)/2) = (-1)^((p-1)/2) (mod p)

(6b)... a((p-1)/2) = -1 + (-1)^((p-1)/2) (mod p).

(End)

a(n) = (-1)^n*2^(4*n+1)*(zeta(-2*n,1/4)-zeta(-2*n,3/4)). -_ Gerry Martens_, May 27 2011

a(n) may be expressed as a sum of multinomials taken over all compositions of 2*n into even parts (Vella 2008): a(n) = sum {compositions 2*i_1+...+2*i_k = 2*n} (-1)^(n+k)* multinom(2*n,2*i_1,...,2*i_k). For example, there are 4 compositions of the number 6 into even parts, namely 6, 4+2, 2+4 and 2+2+2, and hence a(3) = 6!/6!-6!/(4!*2!)-6!/(2!*4!)+6!/(2!*2!*2!) = 61. A companion formula expressing a(n) as a sum of multinomials taken over the compositions of 2*n-1 into odd parts has been given by (Malenfant 2011). - Peter Bala, Jul 07 2011

a(n) = the upper left term in M^n, where M is an infinite square production matrix; M[i,j] = A000290(i) = i^2, i>=1 and 1<=j<=i+1, and M[i,j] = 0, i>=1 and j>=i+2, see the examples. - Gary W. Adamson, Jul 18 2011

E.g.f.: (sec(x)) = 1+x^2/T(0), T(k) = 2(k+1)(2k+1) - x^2 + x^2*(2k+1)(2k+2)/T(k+1) (continued fraction). - Sergei N. Gladkovskii, Oct 31 2011

E.g.f. A'(x) satisfies the differential equation A'(x)=cos(A(x)). - Vladimir Kruchinin, Nov 03 2011

From Peter Bala, Nov 28 2011: (Begin)

a(n) = D^(2*n)(cosh(x)) evaluated at x = 0, where D is the operator cosh(x)*d/dx. a(n) = D^(2*n-1)(f(x)) evaluated at x = 0, where f(x) = 1+x+x^2/2! and D is the operator f(x)*d/dx.

Other generating functions: cosh(int {t = 0..x} 1/cos(t)) = 1+x^2/2!+5*x^4/4!+61*x^6/6!+1385*x^8/8!+.... Cf. A012131.

A(x) := arcsinh(tan(x)) = log(sec(x)+tan(x)) = x+x^3/3!+5*x^5/5!+61*x^7/7!+1385*x^9/9!+.... A(x) satisfies A'(x) = cosh(A(x)).

B(x) := Series reversion(log(sec(x)+tan(x))) = x-x^3/3!+5*x^5/5!-61*x^7/7!+1385*x^9/9!-... = arctan(sinh(x)). B(x) satisfies B'(x) = cos(B(x)). (End)

HANKEL transform is A097476. PSUM transform is A173226. - Michael Somos, May 12 2012

a(n+1) - a(n) = A006212(2*n). - Michael Somos, May 12 2012

a(0) = 1 and, for n > 0, a(n) = (-1)^n*((4*n+1)/(2*n+1) - Sum_{k = 1..n} (4^(2*k)/2*k)*C(2*n,2*k-1)*A000367(k)/A002445(k)); see the Bucur et al. link. - L. Edson Jeffery, Sep 17 2012

O.g.f.: Sum_{n>=0} (2*n)!/2^n * x^n / Product_{k=1..n} (1 + k^2*x). - Paul D. Hanna, Sep 20 2012

E.g.f.: 2/Q(0)  where Q(k) = 1 + 1/(1 - x^2/(x^2 - 2*(k+1)*(2*k+1)/Q(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Sep 22 2012

G.f.: 1/Q(0) where Q(k) = 1 + x*k*(3*k-1) - x*(k+1)*(2*k+1)*(x*k^2+1)/Q(k+1); (continued fraction, Euler's 1st kind, 3-step). - Sergei N. Gladkovskii, Sep 22 2012

E.g.f.: (2 + x^2 + 2*U(0))/(2 + (2 - x^2)*U(0))  where U(k)=  4*k + 4 + 1/( 1 + x^2/( 2 - x^2 + (2*k+3)*(2*k+4)/U(k+1))); (continued fraction, Euler's 1st kind, 3-step). - Sergei N. Gladkovskii, Sep 27 2012

E.g.f.: 1/cos(x)=8*(x^2+1)/(4*x^2 + 8 - x^4*U(0))  where U(k)= 1 + 4*(k+1)*(k+2)/(2*k+3 - x^2*(2*k+3)/(x^2 - 8*(k+1)*(k+2)*(k+3)/U(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Sep 30 2012

a(n) = sum(k=1..2*n, sum(i=0..k-1, (i-k)^(2*n)*C(2*k,i)*(-1)^(i+k+n)) / (2^(k-1))) for n>0, a(0)=1. - Vladimir Kruchinin, Oct 05 2012

G.f.: 1/U(0) where U(k)= 1 + x - x*(2*k+1)*(2*k+2)/(1 - x*(2*k+1)*(2*k+2)/U(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 15 2012

G.f.: 1 + x/G(0)  where G(k)= 1 + x - x*(2*k+2)*(2*k+3)/(1 - x*(2*k+2)*(2*k+3)/G(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 16 2012

Let F(x)=sec(x^(1/2))=Sum_{n>=0} a(n)*x^n/(2*n)!, then F(x)=2/(Q(0) + 1) where Q(k)= 1 - x/(2*k+1)/(2*k+2)/(1 - 1/(1 + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Apr 10 2013

It appears that a(n) = 3*A076552(n - 1) + 2*(-1)^n for n >= 1. Conjectural congruences: a(2*n) == 5 (mod 60) for n >= 1 and a(2*n + 1) == 1 (mod 60) for n >= 0. - Peter Bala, Jul 26 2013

G.f.: Q(0), where Q(k) = 1 - x*(k+1)^2/( x*(k+1)^2 - 1/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 09 2013

E.g.f.: 1/cos(x)= 1+ x^2/(2-x^2)*Q(0), where Q(k) = 1 - 2*x^2*(k+1)*(2*k+1)/( 2*x^2*(k+1)*(2*k+1)+ (12-x^2 + 14*k + 4*k^2)*(2-x^2 + 6*k + 4*k^2)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 11 2013

EXAMPLE

G.f. = 1 + x + 5*x^2 + 61*x^3 + 1385*x^4 + 50521*x^5 + 2702765*x^6 + 199360981*x^7 + ...

sec(x) = 1 + 1/2*x^2 + 5/24*x^4 + 61/720*x^6 + ...

From Gary W. Adamson, Jul 18 2011: (Start)

The first few rows of matrix M are:

  1,  1,  0,  0,  0,...

  4,  4,  4,  0,  0,...

  9,  9,  9,  9,  0,...

  16, 16, 16, 16, 16,... (End)

MAPLE

series(sec(x), x, 40): SERIESTOSERIESMULT(%): subs(x=sqrt(y), %): seriestolist(%);

# end of program

A000364_list := proc(n) local S, k, j; S[0] := 1;

for k from 1 to n do S[k] := k*S[k-1] od;

for k from  1 to n do

    for j from k to n do

        S[j] := (j-k)*S[j-1]+(j-k+1)*S[j] od od;

seq(S[j], j=1..n)  end:

A000364_list(16);  # Peter Luschny, Apr 02 2012

A000364 := proc(n)

    abs(euler(2*n)) ;

end proc: # R. J. Mathar, Mar 14 2013

MATHEMATICA

Take[ Range[0, 32]! * CoefficientList[ Series[ Sec[x], {x, 0, 32}], x], {1, 32, 2}] (* Robert G. Wilson v, Apr 23 2006 *)

Table[Abs[EulerE[2n]], {n, 0, 30}] (* Ray Chandler, Mar 20 2007 *)

a[ n_] := If[ n < 0, 0, With[{m = 2 n}, m! SeriesCoefficient[ Sec[ x], {x, 0, m}]]] (* Michael Somos, Nov 22 2013 *)

a[ n_] := If[ n < 0, 0, With[{m = 2 n + 1}, m! SeriesCoefficient[ InverseGudermannian[ x], {x, 0, m}]]] (* Michael Somos, Nov 22 2013 *)

PROG

(PARI) {a(n)=local(CF=1+x*O(x^n)); if(n<0, return(0), for(k=1, n, CF=1/(1-(n-k+1)^2*x*CF)); return(Vec(CF)[n+1]))} \\ Paul D. Hanna Oct 07 2005

(PARI) {a(n) = if( n<0, 0, (2*n)! * polcoeff( 1 / cos(x + O(x^(2*n + 1))), 2*n))} /* Michael Somos, Jun 18 2002 */

(PARI) {a(n) = local(A); if( n<0, 0, n = 2*n+1 ; A = x * O(x^n); n! * polcoeff( log(1 / cos(x + A) + tan(x + A)), n))} /* Michael Somos, Aug 15 2007 */

(PARI) {a(n)=polcoeff(sum(m=0, n, (2*m)!/2^m * x^m/prod(k=1, m, 1+k^2*x+x*O(x^n))), n)} \\ Paul D. Hanna, Sep 20 2012

(PARI) list(n)=my(v=Vec(1/cos(x+O(x^(2*n+1))))); vector(n, i, v[2*i-1]*(2*i-2)!) \\ Charles R Greathouse IV, Oct 16 2012

(Maxima) a(n):=sum(sum(binomial(k, m)*(-1)^(n+k)/(2^(m-1))*sum(binomial(m, j)*(2*j-m)^(2*n), j, 0, m/2)*(-1)^(k-m), m, 0, k), k, 1, 2*n); [Vladimir Kruchinin, Aug 05 2010]

(Sage)

# Algorithm of L. Seidel (1877)

# n -> [a(0), a(1), ..., a(n-1)] for n > 0.

def A000364_list(len) :

    R = []; A = {-1:0, 0:1}; k = 0; e = 1

    for i in (0..2*len-1) :

        Am = 0; A[k + e] = 0; e = -e

        for j in (0..i) : Am += A[k]; A[k] = Am; k += e

        if e < 0 : R.append(A[-i//2])

    return R

A000364_list(17) # Peter Luschny, Mar 31 2012

(Maxima) a[n]:=if n=0 then 1 else sum(sum((i-k)^(2*n)*binomial(2*k, i)*(-1)^(i+k+n), i, 0, k-1)/ (2^(k-1)), k, 1, 2*n); makelist(a[n], n, 0, 16); [Vladimir Kruchinin, Oct 05 2012]

CROSSREFS

Cf. A000111, A000182, A011248, A060075, A013525, A000816, A002436, A000464, A002105, A002439, A079144, A158690.

Essentially same as A028296 and A122045.

First column of triangle A060074.

Two main diagonals of triangle A060058 (as iterated sums of squares).

Absolute values of row sums of A160485. - Johannes W. Meijer, Jul 06 2009

Left edge of triangle A210108, see also A125053, A076552.

Sequence in context: A096537 A115047 A028296 * A159316 A231798 A201254

Adjacent sequences:  A000361 A000362 A000363 * A000365 A000366 A000367

KEYWORD

nonn,easy,nice,core,changed

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 1 01:15 EDT 2014. Contains 248880 sequences.