This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002105 Reduced tangent numbers: 2^n*(2^{2n} - 1)*|B_{2n}|/n, where B_n = Bernoulli numbers. (Formerly M3655 N1487) 39

%I M3655 N1487

%S 1,1,4,34,496,11056,349504,14873104,819786496,56814228736,

%T 4835447317504,495812444583424,60283564499562496,8575634961418940416,

%U 1411083019275488149504,265929039218907754399744,56906245479134057176170496,13722623393637762299131396096,3704005473270641755597685653504

%N Reduced tangent numbers: 2^n*(2^{2n} - 1)*|B_{2n}|/n, where B_n = Bernoulli numbers.

%C Comments from R. L. Graham, Apr 25 2006 and Jun 08 2006: "This sequence also gives the number of ways of arranging 2n tokens in a row, with 2 copies of each token from 1 through n, such that the first token is a 1 and between every pair of tokens labeled i (i=1..n-1) there is exactly one token labeled i+1.

%C "For example, for n=3, there are 4 possibilities: 123123, 121323, 132312 and 132132 and indeed a(3) = 4. This is the work of my Ph. D. student Nan Zang. See also A117513, A117514, A117515.

%C "Develin and Sullivant give another occurrence of this sequence and show that their numbers have the same generating function, although they were unable to find a 1-1-mapping between their problem and Poupard's."

%C The sequence 1,0,1,0,4,0,34,0,496,0,11056, ... counts increasing complete binary trees with e.g.f. sec^2(x/sqrt 2). - _Wenjin Woan_, Oct 03 2007

%C a(n) = number of increasing full binary trees on vertex set [2n-1] with the left-largest property: the largest descendant of each non-leaf vertex occurs in its left subtree (Poupard). The first Mathematica recurrence below counts these trees by number 2k-1 of vertices in the left subtree of the root: the root is necessarily labeled 1 and n necessarily occurs in the left subtree and so there are Binomial[2n-3,2k-2] ways to choose the remaining labels for the left subtree. - _David Callan_, Nov 29 2007

%C Number of bilabeled unordered increasing trees with 2n labels. - _Markus Kuba_, Nov 18 2014

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D H. M. Terrill and E. M. Terrill, Tables of numbers related to the tangent coefficients, J. Franklin Inst., 239 (1945), 64-67.

%H T. D. Noe, <a href="/A002105/b002105.txt">Table of n, a(n) for n=1..100</a>

%H G. E. Andrews, J. Jimenez-Urroz, K. Ono, <a href="http://www.mathcs.emory.edu/~ono/publications-cv/pdfs/055.pdf">q-series identities and values of certain L-functions</a>, Duke Math J. Volume 108, Number 3 (2001), 395-419. [From _Peter Bala_, Mar 24 2009]

%H R. C. Archibald, <a href="http://dx.doi.org/10.1090/S0025-5718-45-99088-0">Review of Terrill-Terrill paper</a>, Math. Comp., 1 (1945), pp. 385-386.

%H P. Bala, <a href="/A002105/a002105.pdf">A continued fraction expansion related to A002105</a>

%H Paul Barry, <a href="https://arxiv.org/abs/1803.06408">Three Études on a sequence transformation pipeline</a>, arXiv:1803.06408 [math.CO], 2018.

%H R. B. Brent, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Brent/brent5.html">Generalizing Tuenter's Binomial Sums</a>, J. Int. Seq. 18 (2015) # 15.3.2.

%H M. P. Develin and S. P. Sullivant, <a href="http://dx.doi.org/10.1007/s00026-003-0196-9">Markov Bases of Binary Graph Models</a>, Annals of Combinatorics 7 (2003) 441-466.

%H D. Foata, G-N. Han, <a href="http://dx.doi.org/10.1007/s11139-009-9194-9">The doubloon polynomial triangle</a>, Ram. J. 23 (2010), 107-126

%H Dominique Foata and Guo-Niu Han, <a href="http://dx.doi.org/10.1093/qmath/hap043">Doubloons and new q-tangent numbers</a>, Quart. J. Math. 62 (2) (2011) 417-432

%H D. Foata and G.-N. Han, <a href="http://www-irma.u-strasbg.fr/~foata/paper/pub120DeltaMatrices.pdf">Tree Calculus for Bivariable Difference Equations, 2012</a>. - From _N. J. A. Sloane_, Feb 02 2013

%H R. L. Graham and Nan Zang, <a href="http://dx.doi.org/10.1016/j.jcta.2007.06.003">Enumerating split-pair arrangements</a>, J. Combin. Theory Ser. A 115 (2008), no. 2, 293-303.

%H Aoife Hennessy, <a href="http://repository.wit.ie/1693/1/AoifeThesis.pdf">A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths</a>, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.

%H Markus Kuba, Alois Panholzer, <a href="http://arxiv.org/abs/1411.4587">Combinatorial families of multilabelled increasing trees and hook-length formulas</a>, arXiv:1411.4587 [math.CO], 2014.

%H E. Norton, <a href="http://arxiv.org/abs/1302.5411">Symplectic Reflection Algebras in Positive Characteristic as Ore Extensions</a>, arXiv preprint arXiv:1302.5411 [math.RA], 2013.

%H C. Poupard, <a href="http://dx.doi.org/10.1016/S0195-6698(89)80009-5">Deux proprietes des arbres binaires ordonnes stricts</a>, European J. Combin., 10 (1989), 369-374.

%H M. Safaryan, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.120.07.660">Problem 11725</a>, Amer. Math. Monthly, 120 (2013), 661.

%H H. M. Terrill and E. M. Terrill, <a href="/A001469/a001469.pdf">Tables of numbers related to the tangent coefficients</a>, J. Franklin Inst., 239 (1945), 64-67. [Annotated scanned copy]

%H A. Vieru, <a href="http://arxiv.org/abs/1107.2938">Agoh's conjecture: its proof, its generalizations, its analogues</a>, arXiv preprint arXiv:1107.2938 [math.NT], 2011.

%H <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers.</a>

%F E.g.f.: 2*log(sec(x / sqrt(2))) = Sum_{n>0} a(n) * x^(2*n) / (2*n)!. - _Michael Somos_, Jun 22 2002

%F A000182(n) = 2^(n-1) * a(n). - _Michael Somos_, Jun 22 2002

%F a(n) = 2^(n-1)/n * A110501(n). - _Don Knuth_, Jan 16 2007

%F a(n+1) = Sum_{k =0..n} A094665(n, k). - _Philippe Deléham_, Jun 11 2004

%F O.g.f.: A(x) = x/(1-x/(1-3*x/(1-6*x/(1-10*x/(1-15*x/(... -n*(n+1)/2*x/(1 - ...))))))) (continued fraction). - _Paul D. Hanna_, Oct 07 2005

%F sqrt(2) tan( x/sqrt(2)) = Sum_(n>=0) (x^(2n+1)/(2n+1)!) a_n. - Dominique Foata and Guo-Niu Han, Oct 24 2008

%F Basic hypergeometric generating function: Sum_{n>=0} Product {k = 1..n} (1-exp(-2*k*t))/Product {k = 1..n} (1+exp(-2*k*t)) = 1 + t + 4*t^2/2! + 34*t^3/3! + 496*t^4/4! + ... [Andrews et al., Theorem 4]. For other sequences with generating functions of a similar type see A000364, A000464, A002439, A079144 and A158690. - _Peter Bala_, Mar 24 2009

%F E.g.f.: Sum_{n>=0} Product_{k=1..n} tanh(k*x) = Sum_{n>=0} a(n)*x^n/n!. - _Paul D. Hanna_, May 11 2010

%F a(n)=(-1)^(n+1)*sum(j!*stirling2(2*n+1,j)*2^(n+1-j)*(-1)^(j),j,1,2*n+1), n>=0. - _Vladimir Kruchinin_, Aug 23 2010

%F a(n) = upper left term in M^n, a(n+1) = sum of top row terms in M^n; where M = the infinite square production matrix:

%F 1, 3, 0, 0, 0, 0, 0, ...

%F 1, 3, 6, 0, 0, 0, 0, ...

%F 1, 3, 6, 10, 0, 0, 0, ...

%F 1, 3, 6, 10, 15, 0, 0, ... - _Gary W. Adamson_, Jul 14 2011

%F E.g.f. A(x) satisfies differential equation A''(x)=exp(A(x)). - _Vladimir Kruchinin_, Nov 18 2011

%F E.g.f.: For E(x)=sqrt(2)* tan( x/sqrt(2))=x/G(0); G(k)= 4*k + 1 - x^2/(8*k + 6 - x^2/G(k+1)); (from continued fraction Lambert's, 2-step). - _Sergei N. Gladkovskii_, Jan 14 2012

%F a(n) = (-1)^n*2^(n+1)*Li_{1-2*n}(-1). (See also the Mathematica prog. by Vladimir Reshetnikov.) - _Peter Luschny_, Jun 28 2012

%F G.f.: 1/G(0) where G(k) = 1 - x*( 4*k^2 + 4*k + 1 ) - x^2*(k+1)^2*( 4*k^2 + 8*k + 3)/G(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Jan 14 2013

%F G.f.: 1/Q(0), where Q(k)= 1 - (k+1)*(k+2)/2*x/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, May 03 2013

%F G.f.: 1/G(0)/sqrt(x) -1/sqrt(x), where G(k)= 1 - sqrt(x)*(2*k+1)/(1 + sqrt(x)*(2*k+1)/(1 + sqrt(x)*(k+1)/(1 - sqrt(x)*(k+1)/G(k+1) ))); (continued fraction). - _Sergei N. Gladkovskii_, Jul 07 2013

%F log(2) - 1/1 + 1/2 - 1/3 + ... + (-1)^n / n = (-1)^n / 2 * (1/n - 1 / (2*n^2) + 1 / (2*n^2)^2 - 4 / (2*n^2)^3 + ... + (-1)^k * a(k) / (2*n^2)^k + ...) asymptotic expansion. - _Michael Somos_, Sep 07 2013

%F G.f.: T(0), where T(k) = 1-x*(k+1)*(k+2)/(x*(k+1)*(k+2)-2/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Oct 24 2013

%F a(n) ~ 2^(3*n+2) * n^(2*n-1/2) / (exp(2*n) * Pi^(2*n-1/2)). - _Vaclav Kotesovec_, Nov 03 2014

%F From _Peter Bala_, Sep 10 2015: (Start)

%F The e.g.f. A(x) = sqrt(2)*tan(x/sqrt(2)) satisfies A''(x) = A(x)*A'(x), hence the recurrence a(0) = 0, a(1) = 1, else a(n) = Sum_{i = 0..n-2} binomial(n-2,i)*a(i)*a(n-1-i) for the aerated sequence [0,1,0,1,0,4,0,34,0,496,...].

%F Note, the same recurrence, but with the initial conditions a(0) = 1 and a(1) = 1, produces the sequence [1,1,1,2,5,16,61,272,...] = A000111. (End)

%F a(n) = polygamma(2*n-1, 1/2)*2^(2-n)/Pi^(2*n). - _Vladimir Reshetnikov_, Oct 18 2015

%F E.g.f.: sqrt(2)*tan(x/sqrt(2)) = Sum_{n>0} a(n) * x^(2*n-1) / (2*n-1)!. - _Michael Somos_, Mar 05 2017

%F From _Peter Bala_, May 05 2017: (Start)

%F Let B(x) = A(x)/x = 1 + x + 4*x^2 + 34*x^3 + ... denote the shifted o.g.f. Then B(x) = 1/(1 + 2*x - 3*x/(1 - x/(1 + 2*x - 10*x/(1 - 6*x/(1 + 2*x - 21*x/(1 - 15*x/(1 + 2*x - 36*x/(1 - 28*x/(1 + 2*x - ...))))))))), where the coefficient sequence [3, 1, 10, 6, 21, 15, 36, 28, ...] in the partial numerators of the continued fraction is obtained by swapping adjacent triangular numbers. Cf. A079144.

%F It follows (by means of an equivalence transformation) that the second binomial transform of B(x), with g.f. equal to 1/(1 - 2*x)*B(x/(1 - 2*x)), has the S-fraction representation 1/(1 - 3*x/(1 - x/(1 - 10*x/(1 - 6*x/(1 - 21*x/(1 - 15*x/(1 - 36*x/(1 - 28*x/(1 - ...))))))))). Compare with the S-fraction representation of the g.f. A(x) given above by Hanna (dated Oct 7 2005). (End)

%e G.f. = x + x^2 + 4*x^3 + 34*x^4 + 496*x^5 + 11056*x^6 + 349504*x^7 + ...

%p S := proc(n, k) option remember; if k=0 then `if`(n=0, 1, 0) else S(n, k-1) + S(n-1, n-k) fi end: A002105 := n -> S(2*n-1, 2*n-1)/2^(n-1):

%p seq(A002105(i),i=1..16); # _Peter Luschny_, Jul 08 2012

%t u[1] = 1; u[n_]/;n>=2 := u[n] = Sum[Binomial[2n-3,2k-2]u[k]u[n-k],{k,n-1}]; Table[u[n],{n,8}] (* Poupard and also Develin and Sullivant, give a different recurrence that involves a symmetric sum: v[1] = 1; v[n_]/;n>=2 := v[n] = 1/2 Sum[Binomial[2n-2,2k-1]v[k]v[n-k],{k,n-1}] *) (*_David Callan_, Nov 29 2007 *)

%t a[n_] := (-1)^n 2^(n+1) PolyLog[1-2n, -1]; Array[a, 10] (* _Vladimir Reshetnikov_, Jan 23 2011 *)

%t Table[(-1)^(n+1)*2^n*(2^(2n)-1)*BernoulliB[2n]/n,{n,1,20}] (* _Vaclav Kotesovec_, Nov 03 2014 *)

%t eulerCF[f_, len_] := Module[{g}, g[len-1]=1; g[k_]:=g[k]=1-f[k]/(f[k]-1/g[k+1]); CoefficientList[g[0] + O[x]^len, x]]; A002105List[len_] := eulerCF[(1/2) x (#+1) (#+2)&, len]; A002105List[19] (* _Peter Luschny_, Aug 08 2015 after _Sergei N. Gladkovskii_ *)

%t Table[PolyGamma[2n-1, 1/2] 2^(2-n)/Pi^(2n), {n, 1, 10}] (* _Vladimir Reshetnikov_, Oct 18 2015 *)

%t Table[EulerE[2n-1, 0] (-2)^n, {n, 1, 10}] (* _Vladimir Reshetnikov_, Oct 21 2015 *)

%o (PARI) {a(n) = if( n<1, 0, ((-2)^n - (-8)^n) * bernfrac(2*n) / n)}; /* _Michael Somos_, Jun 22 2002 */

%o (PARI) {a(n) = if( n<0, 0, (2*n)! * polcoeff( -2 * log( cos(x / quadgen(8) + O(x^(2*n + 1)))), 2*n))}; /* _Michael Somos_, Jul 17 2003 */

%o (PARI) {a(n) = if( n<0, 0, -(-2)^(n+1) * sum(i=1, 2*n, 2^-i * sum(j=1, i, (-1)^j * binomial( i-1, j-1) * j^(2*n - 1))))}; /* _Michael Somos_, Sep 07 2013 */

%o (PARI) {a(n)=local(CF=1+x*O(x^n));if(n<1,return(0), for(k=1,n,CF=1/(1-(n-k+1)*(n-k+2)/2*x*CF));return(Vec(CF)[n]))} /* _Paul D. Hanna_ */

%o (PARI) {a(n)=local(X=x+x*O(x^n),Egf);Egf=sum(m=0,n,prod(k=1,m,tanh(k*X)));n!*polcoeff(Egf,n)} /* _Paul D. Hanna_, May 11 2010 */

%o (Sage) # Algorithm of L. Seidel (1877)

%o # n -> [a(1), ..., a(n)] for n >= 1.

%o def A002105_list(n) :

%o D = [0]*(n+2); D[1] = 1

%o R = []; z = 1/2; b = True

%o for i in(0..2*n-1) :

%o h = i//2 + 1

%o if b :

%o for k in range(h-1, 0, -1) : D[k] += D[k+1]

%o z *= 2

%o else :

%o for k in range(1, h+1, 1) : D[k] += D[k-1]

%o b = not b

%o if b : R.append(D[h]*z/h)

%o return R

%o A002105_list(16) # _Peter Luschny_, Jun 29 2012

%Y Row sums of A008301.

%Y Cf. A000364, A000464, A002439, A079144, A158690.

%Y Left edge of triangle A210108. Cf. A000111.

%K easy,nonn,nice

%O 1,3

%A _N. J. A. Sloane_

%E Additional comments from _Michael Somos_, Jun 25 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 02:13 EDT 2018. Contains 315271 sequences. (Running on oeis4.)