login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000182 Tangent (or "Zag") numbers: e.g.f. tan(x), also (up to signs) e.g.f. tanh(x).
(Formerly M2096 N0829)
173
1, 2, 16, 272, 7936, 353792, 22368256, 1903757312, 209865342976, 29088885112832, 4951498053124096, 1015423886506852352, 246921480190207983616, 70251601603943959887872, 23119184187809597841473536, 8713962757125169296170811392, 3729407703720529571097509625856 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Number of Joyce trees with 2n-1 nodes. Number of tremolo permutations of {0,1,...,2n}. - Ralf Stephan, Mar 28 2003
The Hankel transform of this sequence is A000178(n) for n odd = 1, 12, 34560, ...; example: det([1, 2, 16; 2, 16, 272, 16, 272, 7936]) = 34560. - Philippe Deléham, Mar 07 2004
a(n) is the number of increasing labeled full binary trees with 2n-1 vertices. Full binary means every non-leaf vertex has two children, distinguished as left and right; labeled means the vertices are labeled 1,2,...,2n-1; increasing means every child has a label greater than its parent. - David Callan, Nov 29 2007
From Micha Hofri (hofri(AT)wpi.edu), May 27 2009: (Start)
a(n) was found to be the number of permutations of [2n] which when inserted in order, to form a binary search tree, yield the maximally full possible tree (with only one single-child node).
The e.g.f. is sec^2(x)=1+tan^2(x), and the same coefficients can be manufactured from the tan(x) itself, which is the e.g.f. for the number of trees as above for odd number of nodes. (End)
a(n) is the number of increasing strict binary trees with 2n-1 nodes. For more information about increasing strict binary trees with an associated permutation, see A245894. - Manda Riehl, Aug 07 2014
For relations to alternating permutations, Euler and Bernoulli polynomials, zigzag numbers, trigonometric functions, Fourier transform of a square wave, quantum algebras, and integrals over and in n-dimensional hypercubes and over Green functions, see Hodges and Sukumar. For further discussion on the quantum algebra, see the later Hodges and Sukumar reference and the paper by Hetyei presenting connections to the general combinatorial theory of Viennot on orthogonal polynomials, inverse polynomials, tridiagonal matrices, and lattice paths (thereby related to continued fractions and cumulants). - Tom Copeland, Nov 30 2014
The Zigzag Hankel transform is A000178. That is, A000178(2*n - k) = det( [a(i+j - k)]_{i,j = 1..n} ) for n>0 and k=0,1. - Michael Somos, Mar 12 2015
a(n) is the number of standard Young tableaux of skew shape (n,n,n-1,n-2,...,3,2)/(n-1,n-2,n-3,...,2,1). - Ran Pan, Apr 10 2015
For relations to the Sheffer Appell operator calculus and a Riccati differential equation for generating the Meixner-Pollaczek and Krawtchouk orthogonal polynomials, see page 45 of the Feinsilver link and Rzadkowski. - Tom Copeland, Sep 28 2015
For relations to an elliptic curve, a Weierstrass elliptic function, the Lorentz formal group law, a Lie infinitesimal generator, and the Eulerian numbers A008292, see A155585. - Tom Copeland, Sep 30 2015
Absolute values of the alternating sums of the odd-numbered rows (where the single 1 at the apex of the triangle is counted as row #1) of the Eulerian triangle, A008292. The actual alternating sums alternate in sign, e.g., 1, -2, 16, -272, etc. (Even-numbered rows have alternating sums always 0.) - Gregory Gerard Wojnar, Sep 28 2018
The sequence is periodic modulo any odd prime p. The minimal period is (p-1)/2 if p == 1 mod 4 and p-1 if p == 3 mod 4 [Knuth & Buckholtz, 1967, Theorem 1]. - Allen Stenger, Aug 03 2020
From Peter Bala, Dec 24 2021: (Start)
Conjectures:
1) The sequence taken modulo any integer k eventually becomes periodic with period dividing phi(k).
2) The Gauss congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k, except when p = 2, n = 1 and k = 1 or 2.
3) For i >= 1 define a_i(n) = a(n+i). The Gauss congruences a_i(n*p^k) == a_i(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k. If true, then for each i >= 1 the expansion of exp(Sum_{n >= 1} a_i(n)*x^n/n) has integer coefficients. For an example, see A262145.(End)
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 932.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 69.
L. M. Milne-Thompson, Calculus of Finite Differences, 1951, p. 148 (the numbers |C^{2n-1}|).
J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 282.
S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 444.
H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1, p. 20.
L. Seidel, Über eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Ross Street, Surprising relationships connecting ploughing a field, mathematical trees, permutations, and trigonometry, Slides from a talk, July 15 2015, Macquarie University. ["There is a Web Page oeis.org by N. J. A. Sloane. It tells, from typing the first few terms of a sequence, whether that sequence has occurred somewhere else in Mathematics. Postgraduate student Daniel Steffen traced this down and found, to our surprise, that the sequence was related to the tangent function tan x. Ryan and Tam searched out what was known about this connection and discovered some apparently new results. We all found this a lot of fun and I hope you will too."]
E. van Fossen Conrad, Some continued fraction expansions of elliptic functions, PhD thesis, The Ohio State University, 2002, p. 28.
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, pp. 267-268.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..243 (terms 1..100 from N. J. A. Sloane)
V. E. Adler and A. B. Shabat, Volterra chain and Catalan numbers, arXiv:1810.13198 [nlin.SI], 2018.
Étienne Bellin, Arthur Blanc-Renaudie, Emmanuel Kammerer, and Igor Kortchemski, Uniform attachment with freezing, arXiv:2308.00493 [math.PR], 2023. See p. 13.
Beáta Bényi, Miguel Méndez, José L. Ramírez, and Tanay Wakhare, Restricted r-Stirling Numbers and their Combinatorial Applications, arXiv:1811.12897 [math.CO], 2018.
Richard P. Brent and David Harvey, Fast computation of Bernoulli, Tangent and Secant numbers, arXiv preprint arXiv:1108.0286 [math.CO], 2011.
F. C. S. Brown, T. M. A. Fink and K. Willbrand, On arithmetic and asymptotic properties of up-down numbers, arXiv:math/0607763 [math.CO], 2006.
K.-W. Chen, Algorithms for Bernoulli numbers and Euler numbers, J. Integer Sequences, 4 (2001), #01.1.6.
D. Dumont, Interpretations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
D. Dumont and G. Viennot, A combinatorial interpretation of the Seidel generation of Genocchi numbers, Preprint, Annotated scanned copy.
A. L. Edmonds and S. Klee, The combinatorics of hyperbolized manifolds, arXiv preprint arXiv:1210.7396 [math.CO], 2012. - From N. J. A. Sloane, Jan 02 2013
C. J. Fewster and D. Siemssen, Enumerating Permutations by their Run Structure, arXiv preprint arXiv:1403.1723 [math.CO], 2014.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 144.
Dominique Foata and Guo-Niu Han, Doubloons and new q-tangent numbers, Quart. J. Math. 62 (2) (2011) 417-432.
D. Foata and G.-N. Han, Tree Calculus for Bivariable Difference Equations, 2012. - From N. J. A. Sloane, Feb 02 2013
Dominique Foata and Guo-Niu Han, Seidel Triangle Sequences and Bi-Entringer Numbers, November 20, 2013.
Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
M.-P. Grosset and A. P. Veselov, Bernoulli numbers and solitons, arXiv:math/0503175 [math.GM], 2005.
Christian Günther and Kai-Uwe Schmidt, L^q norms of Fekete and related polynomials, arXiv:1602.01750 [math.NT], 2016.
Guo-Niu Han and Jing-Yi Liu, Divisibility properties of the tangent numbers and its generalizations, arXiv:1707.08882 [math.CO], 2017.
G. Hetyei, Meixner polynomials of the second kind and quantum algebras representing su(1,1), arXiv preprint arXiv:0909.4352 [math.QA], 2009.
A. Hodges and C. Sukumar, Bernoulli, Euler, permutations and quantum algebras, Proc. Royal Soc. A (2007) 463, 2401-2414.
A. Hodges and C. Sukumar, Quantum algebras and parity-dependent spectra, Proc. Royal Soc. A (2007) 463, 2415-2427.
Hsien-Kuei Hwang and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
Svante Janson, Euler-Frobenius numbers and rounding, arXiv preprint arXiv:1305.3512 [math.PR], 2013
Donald E. Knuth and Thomas J. Buckholtz, Computation of tangent, Euler and Bernoulli numbers, Math. Comp. 21 1967 663-688.
D. E. Knuth and Thomas J.Buckholtz, Computation of tangent, Euler and Bernoulli numbers, Math. Comp. 21 1967 663-688. [Annotated scanned copy]
A. R. Kräuter, Permanenten - Ein kurzer Überblick, Séminaire Lotharingien de Combinatoire, B09b (1983), 34 pp.
A. R. Kräuter, Über die Permanente gewisser zirkulärer Matrizen..., Séminaire Lotharingien de Combinatoire, B11b (1984), 11 pp.
Johann Heinrich Lambert, Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques, Histoire de l'Académie Royale des Sciences et des Belles-Lettres de Berlin 1761 (Berlin: Haude et Spener, 1768) pp. 265-322.
F. Luca and P. Stanica, On some conjectures on the monotonicity of some arithmetical sequences, J. Combin. Number Theory 4 (2012) 1-10.
Dragan Mašulović, Big Ramsey spectra of countable chains, arXiv:1912.03022 [math.CO], 2019.
A. Niedermaier and J. Remmel, Analogues of Up-down Permutations for Colored Permutations, J. Int. Seq. 13 (2010), 10.5.6.
N. E. Nørlund, Vorlesungen ueber Differenzenrechnung Springer 1924, p. 27.
N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924 [Annotated scanned copy of pages 144-151 and 456-463]
G. Rzadkowski, Bernoulli numbers and solitons-revisited, Jrn. Nonlinear Math. Physics, 1711, pp. 121-126. (Added by Tom Copeland, Sep 29 2015)
Raphael Schumacher, Rapidly Convergent Summation Formulas involving Stirling Series, arXiv preprint arXiv:1602.00336 [math.NT], 2016.
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967) 689-694.
D. Shanks, Corrigendum: Generalized Euler and class numbers. Math. Comp. 22, (1968) 699.
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
R. P. Stanley, Permutations
Ross Street, Trees, permutations and the tangent function gives definition of Joyce trees and tremolo permutations, arXiv:math/0303267 [math.HO], 2003.
Zhi-Wei Sun, Conjectures involving arithmetical sequences, Number Theory: Arithmetic in Shangri-La (eds., S. Kanemitsu, H.-Z. Li and J.-Y. Liu), Proc. the 6th China-Japan Sem. Number Theory (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258. - N. J. A. Sloane, Dec 28 2012
Zhi-Wei Sun, Conjectures involving combinatorial sequences, arXiv preprint arXiv:1208.2683 [math.CO], 2012. - From N. J. A. Sloane, Dec 25 2012
M. S. Tokmachev, Correlations Between Elements and Sequences in a Numerical Prism, Bulletin of the South Ural State University, Ser. Mathematics. Mechanics. Physics, 2019, Vol. 11, No. 1, 24-33.
Yi Wang and Bao-Xuan Zhu, Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences, arXiv preprint arXiv:1303.5595 [math.CO], 2013.
Eric Weisstein's World of Mathematics, Tangent Number
Eric Weisstein's World of Mathematics, Alternating Permutation
Philip B. Zhang, On the Real-rootedness of the Descent Polynomials of (n-2)-Stack Sortable Permutations, arXiv preprint arXiv:1408.4235 [math.CO], 2014.
Bao-Xuan Zhu, Analytic approaches to monotonicity and log-behavior of combinatorial sequences, arXiv preprint arXiv:1309.5693 [math.CO], 2013.
FORMULA
E.g.f.: log(sec x) = Sum_{n > 0} a(n)*x^(2*n)/(2*n)!.
E.g.f.: tan x = Sum_{n >= 0} a(n+1)*x^(2*n+1)/(2*n+1)!.
E.g.f.: (sec x)^2 = Sum_{n >= 0} a(n+1)*x^(2*n)/(2*n)!.
2/(exp(2x)+1) = 1 + Sum_{n>=1} (-1)^(n+1) a(n) x^(2n-1)/(2n-1)! = 1 - x + x^3/3 - 2*x^5/15 + 17*x^7/315 - 62*x^9/2835 + ...
a(n) = 2^(2*n) (2^(2*n) - 1) |B_(2*n)| / (2*n) where B_n are the Bernoulli numbers (A000367/A002445 or A027641/A027642).
Asymptotics: a(n) ~ 2^(2*n+1)*(2*n-1)!/Pi^(2*n).
Sum[2^(2*n + 1 - k)*(-1)^(n + k + 1)*k!*StirlingS2[2*n + 1, k], {k, 1, 2*n + 1}]. - Victor Adamchik, Oct 05 2005
a(n) = abs[c(2*n-1)] where c(n)= 2^(n+1) * (1-2^(n+1)) * Ber(n+1)/(n+1) = 2^(n+1) * (1-2^(n+1)) * (-1)^n * Zeta(-n) = [ -(1+EN(.))]^n = 2^n * GN(n+1)/(n+1) = 2^n * EP(n,0) = (-1)^n * E(n,-1) = (-2)^n * n! * Lag[n,-P(.,-1)/2] umbrally = (-2)^n * n! * C{T[.,P(.,-1)/2] + n, n} umbrally for the signed Euler numbers EN(n), the Bernoulli numbers Ber(n), the Genocchi numbers GN(n), the Euler polynomials EP(n,t), the Eulerian polynomials E(n,t), the Touchard / Bell polynomials T(n,t), the binomial function C(x,y) = x!/[(x-y)!*y! ] and the polynomials P(j,t) of A131758. - Tom Copeland, Oct 05 2007
a(1) = A094665(0,0)*A156919(0,0) and a(n) = Sum_{k=1..n-1} 2^(n-k-1)*A094665(n-1, k)*A156919(k,0) for n = 2, 3, .., see A162005. - Johannes W. Meijer, Jun 27 2009
G.f.: 1/(1-1*2*x/(1-2*3*x/(1-3*4*x/(1-4*5*x/(1-5*6*x/(1-... (continued fraction). - Paul Barry, Feb 24 2010
From Paul Barry, Mar 29 2010: (Start)
G.f.: 1/(1-2x-12x^2/(1-18x-240x^2/(1-50x-1260x^2/(1-98x-4032x^2/(1-162x-9900x^2/(1-... (continued fraction);
coefficient sequences given by 4*(n+1)^2*(2n+1)*(2n+3) and 2(2n+1)^2 (see Van Fossen Conrad reference). (End)
E.g.f.: x*Sum_{n>=0} Product_{k=1..n} tanh(2*k*x) = Sum_{n>=1} a(n)*x^n/(n-1)!. - Paul D. Hanna, May 11 2010 [corrected by Paul D. Hanna, Sep 28 2023]
a(n) = (-1)^(n+1)*Sum_{j=1..2*n+1} j!*Stirling2(2*n+1,j)*2^(2*n+1-j)*(-1)^j for n >= 0. Vladimir Kruchinin, Aug 23 2010: (Start)
If n is odd such that 2*n-1 is prime, then a(n) == 1 (mod (2*n-1)); if n is even such that 2*n-1 is prime, then a(n) == -1 (mod (2*n-1)). - Vladimir Shevelev, Sep 01 2010
Recursion: a(n) = (-1)^(n-1) + Sum_{i=1..n-1} (-1)^(n-i+1)*C(2*n-1,2*i-1)* a(i). - Vladimir Shevelev, Aug 08 2011
E.g.f.: tan(x) = Sum_{n>=1} a(n)*x^(2*n-1)/(2*n-1)! = x/(1 - x^2/(3 - x^2/(5 - x^2/(7 - x^2/(9 - x^2/(11 - x^2/(13 -...))))))) (continued fraction from J. H. Lambert - 1761). - Paul D. Hanna, Sep 21 2011
From Sergei N. Gladkovskii, Oct 31 2011 to Oct 09 2013: (Start)
Continued fractions:
E.g.f.: (sec(x))^2 = 1+x^2/(x^2+U(0)) where U(k) = (k+1)*(2k+1) - 2x^2 + 2x^2*(k+1)*(2k+1)/U(k+1).
E.g.f.: tan(x) = x*T(0) where T(k) = 1-x^2/(x^2-(2k+1)*(2k+3)/T(k+1)).
E.g.f.: tan(x) = x/(G(0)+x) where G(k) = 2*k+1 - 2*x + x/(1 + x/G(k+1)).
E.g.f.: tanh(x) = x/(G(0)-x) where G(k) = k+1 + 2*x - 2*x*(k+1)/G(k+1).
E.g.f.: tan(x) = 2*x - x/W(0) where W(k) = 1 + x^2*(4*k+5)/((4*k+1)*(4*k+3)*(4*k+5) - 4*x^2*(4*k+3) + x^2*(4*k+1)/W(k+1)).
E.g.f.: tan(x) = x/T(0) where T(k) = 1 - 4*k^2 + x^2*(1 - 4*k^2)/T(k+1).
E.g.f.: tan(x) = -3*x/(T(0)+3*x^2) where T(k)= 64*k^3 + 48*k^2 - 4*k*(2*x^2 + 1) - 2*x^2 - 3 - x^4*(4*k -1)*(4*k+7)/T(k+1).
G.f.: 1/G(0) where G(k) = 1 - 2*x*(2*k+1)^2 - x^2*(2*k+1)*(2*k+2)^2*(2*k+3)/G(k+1).
G.f.: 2*Q(0) - 1 where Q(k) = 1 + x^2*(4*k + 1)^2/(x + x^2*(4*k + 1)^2 - x^2*(4*k + 3)^2*(x + x^2*(4*k + 1)^2)/(x^2*(4*k + 3)^2 + (x + x^2*(4*k + 3)^2)/Q(k+1) )).
G.f.: (1 - 1/G(0))*sqrt(-x), where G(k) = 1 + sqrt(-x) - x*(k+1)^2/G(k+1).
G.f.: Q(0), where Q(k) = 1 - x*(k+1)*(k+2)/( x*(k+1)*(k+2) - 1/Q(k+1)). (End)
O.g.f.: x + 2*x*Sum_{n>=1} x^n * Product_{k=1..n} (2*k-1)^2 / (1 + (2*k-1)^2*x). - Paul D. Hanna, Feb 05 2013
a(n) = (-4)^n*Li_{1-2*n}(-1). - Peter Luschny, Jun 28 2012
a(n) = (-4)^n*(4^n-1)*Zeta(1-2*n). - Jean-François Alcover, Dec 05 2013
Asymptotic expansion: 4*((2*(2*n-1))/(Pi*e))^(2*n-1/2)*exp(1/2+1/(12*(2*n-1))-1/(360*(2*n-1)^3)+1/(1260*(2*n-1)^5)-...). (See Luschny link.) - Peter Luschny, Jul 14 2015
From Peter Bala, Sep 11 2015: (Start)
The e.g.f. A(x) = tan(x) satisfies the differential equation A''(x) = 2*A(x)*A'(x) with A(0) = 0 and A'(0) = 1, leading to the recurrence a(0) = 0, a(1) = 1, else a(n) = 2*Sum_{i = 0..n-2} binomial(n-2,i)*a(i)*a(n-1-i) for the aerated sequence [0, 1, 0, 2, 0, 16, 0, 272, ...].
Note, the same recurrence, but with the initial conditions a(0) = 1 and a(1) = 1, produces the sequence n! and with a(0) = 1/2 and a(1) = 1 produces A080635. Cf. A002105, A234797. (End)
a(n) = 2*polygamma(2*n-1, 1/2)/Pi^(2*n). - Vladimir Reshetnikov, Oct 18 2015
a(n) = 2^(2n-2)*|p(2n-1,-1/2)|, where p_n(x) are the shifted row polynomials of A019538. E.g., a(2) = 2 = 2^2 * |1 + 6(-1/2) + 6(-1/2)^2|. - Tom Copeland, Oct 19 2016
From Peter Bala, May 05 2017: (Start)
With offset 0, the o.g.f. A(x) = 1 + 2*x + 16*x^2 + 272*x^3 + ... has the property that its 4th binomial transform 1/(1 - 4*x) A(x/(1 - 4*x)) has the S-fraction representation 1/(1 - 6*x/(1 - 2*x/(1 - 20*x/(1 - 12*x/(1 - 42*x/(1 - 30*x/(1 - ...))))))), where the coefficients [6, 2, 20, 12, 42, 30, ...] in the partial numerators of the continued fraction are obtained from the sequence [2, 6, 12, 20, ..., n*(n + 1), ...] by swapping adjacent terms. Compare with the S-fraction associated with A(x) given above by Paul Barry.
A(x) = 1/(1 + x - 3*x/(1 - 4*x/(1 + x - 15*x/(1 - 16*x/(1 + x - 35*x/(1 - 36*x/(1 + x - ...))))))), where the unsigned coefficients in the partial numerators [3, 4, 15, 16, 35, 36,...] come in pairs of the form 4*n^2 - 1, 4*n^2 for n = 1,2,.... (End)
a(n) = Sum_{i = 1..n-1} binomial(2*n-2, 2*k-1) * a(k) * a(n-k), with a(1) = 1. - Michael Somos, Aug 02 2018
a(n) = 2^(2*n-1) * |Euler(2*n-1, 0)|, where Euler(n,x) are the Euler polynomials. - Daniel Suteu, Nov 21 2018 (restatement of one of Copeland's 2007 formulas.)
x - Sum_{n >= 1} (-1)^n*a(n)*x^(2*n)/(2*n)! = x - log(cosh(x)). The series reversion of x - log(cosh(x)) is (1/2)*x - (1/2)*log(2 - exp(x)) = Sum_{n >= 0} A000670(n)*x^(n+1)/(n+1)!. - Peter Bala, Jul 11 2022
For n > 1, a(n) = 2*Sum_{j=1..n-1} Sum_{k=1..j} binomial(2*j,j+k)*(-4*k^2)^(n-1)*(-1)^k/(4^j). - Tani Akinari, Sep 20 2023
EXAMPLE
tan(x) = x + 2*x^3/3! + 16*x^5/5! + 272*x^7/7! + ... = x + 1/3*x^3 + 2/15*x^5 + 17/315*x^7 + 62/2835*x^9 + O(x^11).
tanh(x) = x - 1/3*x^3 + 2/15*x^5 - 17/315*x^7 + 62/2835*x^9 - 1382/155925*x^11 + ...
(sec x)^2 = 1 + x^2 + 2/3*x^4 + 17/45*x^6 + ...
a(3)=16 because we have: {1, 3, 2, 5, 4}, {1, 4, 2, 5, 3}, {1, 4, 3, 5, 2},
{1, 5, 2, 4, 3}, {1, 5, 3, 4, 2}, {2, 3, 1, 5, 4}, {2, 4, 1, 5, 3},
{2, 4, 3, 5, 1}, {2, 5, 1, 4, 3}, {2, 5, 3, 4, 1}, {3, 4, 1, 5, 2},
{3, 4, 2, 5, 1}, {3, 5, 1, 4, 2}, {3, 5, 2, 4, 1}, {4, 5, 1, 3, 2},
{4, 5, 2, 3, 1}. - Geoffrey Critzer, May 19 2013
MAPLE
series(tan(x), x, 40);
with(numtheory): a := n-> abs(2^(2*n)*(2^(2*n)-1)*bernoulli(2*n)/(2*n));
A000182_list := proc(n) local T, k, j; T[1] := 1;
for k from 2 to n do T[k] := (k-1)*T[k-1] od;
for k from 2 to n do
for j from k to n do
T[j] := (j-k)*T[j-1]+(j-k+2)*T[j] od od;
seq(T[j], j=1..n) end:
A000182_list(15); # Peter Luschny, Apr 02 2012
MATHEMATICA
Table[ Sum[2^(2*n + 1 - k)*(-1)^(n + k + 1)*k!*StirlingS2[2*n + 1, k], {k, 1, 2*n + 1}], {n, 0, 7}] (* Victor Adamchik, Oct 05 2005 *)
v[1] = 2; v[n_] /; n >= 2 := v[n] = Sum[ Binomial[2 n - 3, 2 k - 2] v[k] v[n - k], {k, n - 1}]; Table[ v[n]/2, {n, 15}] (* Zerinvary Lajos, Jul 08 2009 *)
Rest@ Union[ Range[0, 29]! CoefficientList[ Series[ Tan[x], {x, 0, 30}], x]] (* Harvey P. Dale, Oct 19 2011; modified by Robert G. Wilson v, Apr 02 2012 *)
t[1, 1] = 1; t[1, 0] = 0; t[n_ /; n > 1, m_] := t[n, m] = m*(m+1)*Sum[t[n-1, k], {k, m-1, n-1}]; a[n_] := t[n, 1]; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Jan 02 2013, after A064190 *)
a[ n_] := If[ n < 1, 0, With[{m = 2 n - 1}, m! SeriesCoefficient[ Tan[x], {x, 0, m}]]]; (* Michael Somos, Mar 12 2015 *)
a[ n_] := If[ n < 1, 0, ((-16)^n - (-4)^n) Zeta[1 - 2 n]]; (* Michael Somos, Mar 12 2015 *)
Table[2 PolyGamma[2n - 1, 1/2]/Pi^(2n), {n, 1, 10}] (* Vladimir Reshetnikov, Oct 18 2015 *)
a[ n_] := a[n] = If[ n < 2, Boole[n == 1], Sum[Binomial[2 n - 2, 2 k - 1] a[k] a[n - k], {k, n - 1}]]; (* Michael Somos, Aug 02 2018 *)
a[n_] := (2^(2*n)*(2^(2*n) - 1)*Abs[BernoulliB[2*n]])/(2*n); a /@ Range[20] (* Stan Wagon, Nov 21 2022 *)
PROG
(PARI) {a(n) = if( n<1, 0, ((-4)^n - (-16)^n) * bernfrac(2*n) / (2*n))};
(PARI) {a(n) = my(an); if( n<2, n==1, an = vector(n, m, 1); for( m=2, n, an[m] = sum( k=1, m-1, binomial(2*m - 2, 2*k - 1) * an[k] * an[m-k])); an[n])}; /* Michael Somos */
(PARI) {a(n) = if( n<1, 0, (2*n - 1)! * polcoeff( tan(x + O(x^(2*n + 2))), 2*n - 1))}; /* Michael Somos */
(PARI) {a(n) = my(X=x+x*O(x^n), Egf); Egf = x*sum(m=0, n, prod(k=1, m, tanh(2*k*X))); (n-1)!*polcoeff(Egf, n)} /* Paul D. Hanna, May 11 2010 */
(PARI) /* Continued Fraction for the e.g.f. tan(x), from Paul D. Hanna: */
{a(n)=local(CF=1+O(x)); for(i=1, n, CF=1/(2*(n-i+1)-1-x^2*CF)); (2*n-1)!*polcoeff(x*CF, 2*n-1)}
(PARI) /* O.g.f. Sum_{n>=1} a(n)*x^n, from Paul D. Hanna Feb 05 2013: */
{a(n)=polcoeff( x+2*x*sum(m=1, n, x^m*prod(k=1, m, (2*k-1)^2/(1+(2*k-1)^2*x +x*O(x^n))) ), n)}
(Maxima) a(n):=sum(sum(binomial(k, r)*sum(sum(binomial(l, j)/2^(j-1)*sum((-1)^(n)*binomial(j, i)*(j-2*i)^(2*n), i, 0, floor((j-1)/2))*(-1)^(l-j), j, 1, l)*(-1)^l*binomial(r+l-1, r-1), l, 1, 2*n)*(-1)^(1-r), r, 1, k)/k, k, 1, 2*n); /* Vladimir Kruchinin, Aug 23 2010 */
(Maxima) a[n]:=if n=1 then 1 else 2*sum(sum(binomial(2*j, j+k)*(-4*k^2)^(n-1)*(-1)^k/(4^j), k, 1, j), j, 1, n-1);
makelist(a[n], n, 1, 30); /* Tani Akinari, Sep 20 2023 */
(Python) # The objective of this implementation is efficiency.
# n -> [0, a(1), a(2), ..., a(n)] for n > 0.
def A000182_list(n):
T = [0 for i in range(1, n+2)]
T[1] = 1
for k in range(2, n+1):
T[k] = (k-1)*T[k-1]
for k in range(2, n+1):
for j in range(k, n+1):
T[j] = (j-k)*T[j-1]+(j-k+2)*T[j]
return T
print(A000182_list(100)) # Peter Luschny, Aug 07 2011
(Python)
from sympy import bernoulli
def A000182(n): return abs(((2-(2<<(m:=n<<1)))*bernoulli(m)<<m-2)//n) # Chai Wah Wu, Apr 14 2023
(Sage) # Algorithm of L. Seidel (1877)
# n -> [a(1), ..., a(n)] for n >= 1.
def A000182_list(len) :
R = []; A = {-1:0, 0:1}; k = 0; e = 1
for i in (0..2*len-1) :
Am = 0; A[k + e] = 0; e = -e
for j in (0..i) : Am += A[k]; A[k] = Am; k += e
if e > 0 : R.append(A[i//2])
return R
A000182_list(15) # Peter Luschny, Mar 31 2012
CROSSREFS
A350972 is essentially the same sequence.
a(n)=2^(n-1)*A002105(n). Apart from signs, 2^(2n-2)*A001469(n) = n*a(n).
Cf. A001469, A002430, A036279, A000364 (secant numbers), A000111 (secant-tangent numbers), A024283, A009764. First diagonal of A059419 and of A064190.
Equals A002425(n) * 2^A101921(n).
Equals leftmost column of A162005. - Johannes W. Meijer, Jun 27 2009
Cf. A019538.
Sequence in context: A050974 A012188 A217816 * A009764 A189257 A227674
KEYWORD
nonn,core,easy,nice
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 04:58 EDT 2024. Contains 370952 sequences. (Running on oeis4.)