login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158690 Expansion of the basic hypergeometric series 1 + (1 - exp(-t)) + (1 - exp(-t))*(1 - exp(-3*t)) + (1 - exp(-t))*(1 - exp(-3*t))*(1 - exp(-5*t)) + ... as a series in t. 16
1, 1, 5, 55, 1073, 32671, 1431665, 85363615, 6646603073, 654896692351, 79656194515025, 11722538113191775, 2052949879753739873, 421931472111868912831, 100568330857984368195185 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
We appear to get the same sequence by expanding 1 - (1 - exp(t)) + (1 - exp(t))*(1 - exp(2*t)) - (1 - exp(t))*(1 - exp(2*t))*(1 - exp(3*t)) + ... as a series in t. Compare with A079144. For other sequences with generating functions of a similar type see A000364, A000464, A002105 and A002439.
From Peter Bala, Mar 13 2017: (Start)
It appears that the g.f. has two other forms: either F(exp(-t)) where F(q) = Sum_{n >= 0} q^(n+1)*Product_{k = 1..n} 1 - q^(2*k) = q + q^2 + q^3 - q^7 - q^8 - q^10 - q^11 - ... is a g.f. for A003475 or 1/2*G(exp(t)) where G(q) = 1 + Sum_{n >= 0} (-1)^n*q^(n+1)*Product_{k = 1..n} 1 - q^k = 1 + q - q^2 + 2*q^3 - 2*q^4 + q^5 + q^7 - 2*q^8 + ... is a g.f. for A003406. See Zagier, Example 1. (End)
From Peter Bala, Dec 18 2021: (Start)
Conjectures:
1) Taking the sequence modulo an integer k gives an eventually periodic sequence with period dividing phi(k). For example, the sequence taken modulo 16 begins [1, 1, 5, 7, 1, 15, 1, 15, 1, 15, 1, 15, ...] with an apparent pre-period of length 4 and a period of length 2.
2) Let i >= 0 and define a_i(n) = a(n+i). Then for each i the Gauss congruences a_i(n*p^k) == a_i(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k.
If true, then for each i the expansion of exp( Sum_{n >= 1} a_i(n)*x^n/n ) has integer coefficients. For example, the expansion of exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 21*x^3 + 291*x^4 + 6861*x^5 + 246171*x^6 + 12458901*x^7 + 843915891*x^8 + 73640674461*x^9 + 8041227405771*x^10 + ... appears to have integer coefficients. (End)
LINKS
Hsien-Kuei Hwang, and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
D. Zagier, Quantum modular forms, Quanta of Maths: Conference in honor of Alain Connes, Clay Mathematics Proceedings 11, AMS and Clay Mathematics Institute 2010, 659-675
FORMULA
Basic hypergeometric generating function: 1 + Sum_{n >= 0} Product_{k = 1..n} (1 - exp(2*k-1)*t) = 1 + t + 5*t^2/2! + 55*t^3/3! + ....
a(n) ~ 6*sqrt(2) * 12^n * (n!)^2 / Pi^(2*n+2). - Vaclav Kotesovec, May 04 2014
Conjectural g.f.: G(exp(t)) as a formal power series in t, where G(q) := Sum_{n >= 0} q^(2*n+1) * Product_{k = 1..2*n} (1 - q^k). - Peter Bala, May 16 2017
E.g.f.: Sum_{n>=0} exp(n*(n+1)/2*x) / Product_{k=0..n} (1 + exp(k*x)). - Paul D. Hanna, Oct 14 2020
EXAMPLE
G.f. A(x) = 1 + x + 5*x^2 + 55*x^3 + 1073*x^4 + 32671*x^5 + 1431665*x^6 + ...
MATHEMATICA
max = 14; se = Series[1 + Sum[ Product[1 - E^(-(2*k - 1)*t), {k, 1, n}], {n, 1, max}], {t, 0, max}]; CoefficientList[se, t]*Range[0, max]! (* Jean-François Alcover, Mar 06 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, prod(k=1, m, 1-exp(-(2*k-1)*x+x*O(x^n)))), n)} \\ Paul D. Hanna, Aug 01 2012
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, prod(k=1, m, exp(k*x+x*O(x^n))-1)), n)} \\ Paul D. Hanna, Aug 01 2012
CROSSREFS
Sequence in context: A336289 A119399 A177557 * A280573 A192723 A102221
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 24 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 17:56 EDT 2024. Contains 371781 sequences. (Running on oeis4.)