OFFSET
1,2
COMMENTS
This sequence coincides with the sequence f(n) = denominator of 1 + 1/3 + 1/5 + 1/7 + ... + 1/(2n-1) iff n <= 38. But a(39) = 6414924694381721303722858446525, f(39) = 583174972216520118520259858775. - T. D. Noe, Aug 04 2004 [See A350670(n-1).]
Coincides for n=1..42 with the denominators of a series for Pi*sqrt(2)/4 and then starts to differ. See A127676.
a(floor((n+1)/2)) = gcd(a(n), A051426(n)). - Reinhard Zumkeller, Apr 25 2011
A051417(n) = a(n+1)/a(n).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..200
Yue-Wu Li and Feng Qi, A New Closed-Form Formula of the Gauss Hypergeometric Function at Specific Arguments, Axioms (2024) Vol. 13, Art. No. 317. See p. 11 of 24.
Eric Weisstein's World of Mathematics, Jeep Problem, Pi, Pi Continued Fraction, Least Common Multiple
Wikipedia, Least common multiple
MAPLE
A025547:=proc(n) local i, t1; t1:=1; for i from 1 to n do t1:=lcm(t1, 2*i-1); od: t1; end;
f := n->denom(add(1/(2*k-1), k=0..n)); # a different sequence!
MATHEMATICA
a = 1; Join[{1}, Table[a = LCM[a, n], {n, 3, 125, 2}]] (* Zak Seidov, Jan 18 2011 *)
nn=30; With[{c=Range[1, 2*nn, 2]}, Table[LCM@@Take[c, n], {n, nn}]] (* Harvey P. Dale, Jan 27 2013 *)
PROG
(Haskell)
a025547 n = a025547_list !! (n-1)
a025547_list = scanl1 lcm a005408_list
-- Reinhard Zumkeller, Oct 25 2013, Apr 25 2011
(PARI) a(n)=lcm(vector(n, k, 2*k-1)) \\ Charles R Greathouse IV, Nov 20 2012
(Python) # generates initial segment of sequence
from math import gcd
from itertools import accumulate
def lcm(a, b): return a * b // gcd(a, b)
def aupton(nn): return list(accumulate((2*i+1 for i in range(nn)), lcm))
print(aupton(23)) # Michael S. Branicky, Mar 28 2022
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
STATUS
approved