This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025547 Least common multiple of {1,3,5,...,2n-1}. 26
 1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This sequence coincides with the sequence f(n) = denominator of 1+1/3+1/5+1/7+...+1/(2n-1) iff n <= 38. But a(39) = 6414924694381721303722858446525, f(39) = 583174972216520118520259858775. - T. D. Noe, Aug 04 2004 Coincides for n=1..42 with the denominators of a series for Pi*sqrt(2)/4 and then starts to differ. See A127676. a(floor((n+1)/2)) = GCD(a(n), A051426(n)). [Reinhard Zumkeller, Apr 25 2011] LINKS T. D. Noe, Table of n, a(n) for n = 1..200 Eric Weisstein's World of Mathematics, Jeep Problem, Pi, Pi Continued Fraction, Least Common Multiple Wikipedia, Least common multiple MAPLE A025547:=proc(n) local i, t1; t1:=1; for i from 1 to n do t1:=lcm(t1, 2*i-1); od: t1; end; f := n->denom(add(1/(2*k-1), k=0..n)); # a different sequence! MATHEMATICA a = 1; Join[{1}, Table[a = LCM[a, n], {n, 3, 125, 2}]] (* From Zak Seidov, Jan 18 2011 *) nn=30; With[{c=Range[1, 2*nn, 2]}, Table[LCM@@Take[c, n], {n, nn}]] (* Harvey P. Dale, Jan 27 2013 *) PROG (Haskell) a025547 n = foldl lcm 1 [1, 3..2*n-1] -- Reinhard Zumkeller, Apr 25 2011 (PARI) a(n)=lcm(vector(n, k, 2*k-1)) \\ Charles R Greathouse IV, Nov 20 2012 CROSSREFS Cf. A007509, A025550, A075135. The numerators are in A074599. Cf. A003418 (LCM of {1..n}). Sequence in context: A136092 A181131 A145624 * A220747 A088989 A001801 Adjacent sequences:  A025544 A025545 A025546 * A025548 A025549 A025550 KEYWORD easy,nice,nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 23 10:15 EDT 2013. Contains 225587 sequences.