login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025550
a(n) = ( 1/1 + 1/3 + 1/5 + ... + 1/(2*n-1) )*LCM(1, 3, 5, ..., 2*n-1).
12
1, 4, 23, 176, 563, 6508, 88069, 91072, 1593269, 31037876, 31730711, 744355888, 3788707301, 11552032628, 340028535787, 10686452707072, 10823198495797, 10952130239452, 409741429887649, 414022624965424, 17141894231615609, 743947082888833412, 750488463554668427
OFFSET
1,2
COMMENTS
Or, numerator of 1/1 + 1/3 + ... + 1/(2n-1) up to a(38).
Following similar remark by T. D. Noe in A025547, this coincides with f(n) = numerator of 1 + 1/3 + 1/5 + 1/7 + ... + 1/(2n-1) iff n <= 38. But a(39) = 18048708369314455836683437302413, f(39) = 1640791669937677803334857936583. Note that f(n) = numerator(digamma(n+1/2)/2 + log(2) + euler_gamma/2). - Paul Barry, Aug 19 2005 [See A350669(n-1).]
LINKS
Georg Fischer, Table of n, a(n) for n = 1..200 (first 39 terms from Jean-François Alcover)
Eric Weisstein's World of Mathematics, Jeep Problem
MAPLE
a:= n-> (f-> add(1/p, p=f)*ilcm(f[]))([2*i-1$i=1..n]):
seq(a(n), n=1..40); # Alois P. Heinz, Apr 16 2015
MATHEMATICA
Table[(Total[1/Range[1, 2n-1, 2]])LCM@@Range[1, 2n-1, 2], {n, 30}] (* Harvey P. Dale, Sep 09 2020 *)
PROG
(Haskell)
a025550 n = numerator $ sum $ map (1 %) $ take n [1, 3 ..]
-- Reinhard Zumkeller, Jan 22 2012
(PARI) a(n)=my(v=vector(n, i, 2*i-1)); sum(i=1, #v, 1/v[i])*lcm(v) \\ Charles R Greathouse IV, Feb 28 2013
(Magma) [&+[1/d: d in i]*Lcm(i) where i is [1..2*n-1 by 2]: n in [1..21]]; // Bruno Berselli, Apr 16 2015
CROSSREFS
KEYWORD
nonn,easy,nice,frac
EXTENSIONS
Value of a(39) corrected by Jean-François Alcover, Apr 16 2015
STATUS
approved