login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025551 a(n) = 3^n*(3^n + 1)/2. 3
1, 6, 45, 378, 3321, 29646, 266085, 2392578, 21526641, 193720086, 1743421725, 15690618378, 141215033961, 1270933711326, 11438398618965, 102945573221778, 926510115949281, 8338590914403366, 75047317842209805, 675425859417626778 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..750

Index entries for linear recurrences with constant coefficients, signature (12, -27).

FORMULA

From Philippe Deléham, Jul 11 2005: (Start)

Binomial transform of A081342.

6th binomial transform of (1, 0, 9, 0, 81, 0, 729, 0, . . ).

Inverse binomial transform of A081343.

a(n) = 12*a(n-1) - 27*a(n-2), a(0) = 1, a(1) = 6.

G.f.: (1-6*x)/((1-3*x)*(1-9*x)).

E.g.f.: exp(7*x)*cosh(3*x). (End)

a(n) = ((6+sqrt(9))^n + (6-sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008

a(n) = Sum_{k=1..3^n} k. - Joerg Arndt, Sep 01 2013

MAPLE

seq( binomial(3^n +1, 2), n=0..20); # G. C. Greubel, Jan 08 2020

MATHEMATICA

LinearRecurrence[{12, -27}, {1, 6}, 20] (* G. C. Greubel, Jan 08 2020 *)

PROG

(PARI) Vec( (1-6*x)/((1-3*x)*(1-9*x)) + O(x^66) ) \\ Joerg Arndt, Sep 01 2013

(MAGMA) [Binomial(3^n+1, 2): n in [0..20]]; // G. C. Greubel, Jan 08 2020

(Sage) [binomial(3^n+1, 2) for n in (0..20)] # G. C. Greubel, Jan 08 2020

(GAP) List([0..20], n-> Binomial(3^n+1, 2) ); # G. C. Greubel, Jan 08 2020

CROSSREFS

Sequence in context: A007193 A153399 A007194 * A101600 A233668 A243694

Adjacent sequences:  A025548 A025549 A025550 * A025552 A025553 A025554

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 12 02:02 EDT 2020. Contains 335658 sequences. (Running on oeis4.)