login
A350669
Numerators of Sum_{j=0..n} 1/(2*j+1), for n >= 0.
6
1, 4, 23, 176, 563, 6508, 88069, 91072, 1593269, 31037876, 31730711, 744355888, 3788707301, 11552032628, 340028535787, 10686452707072, 10823198495797, 10952130239452, 409741429887649, 414022624965424, 17141894231615609, 743947082888833412, 750488463554668427, 35567319917031991744, 250947670863258378883, 252846595191840484708, 13497714685925233086599
OFFSET
0,2
COMMENTS
For the denominators see A350670.
This sequence coincides with A025550(n+1), for n = 0, 1, ..., 37. See the comments there.
Thanks to Ralf Steiner for sending me a paper where this and similar sums appear.
LINKS
Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions. p.258, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. p. 258.
FORMULA
a(n) = numerator((Psi(n+3/2) + gamma + 2*log(2))/2), with the Digamma function Psi(z), and the Euler-Mascheroni constant gamma = A001620. See Abramowitz-Stegun, p. 258. 6.3.4.
a(n) = (1/2) * numerator of ( 2*H_{2*n+2} - H_{n+1} ), where H_{n} is the n-th Harmonic number. - G. C. Greubel, Jul 24 2023
MATHEMATICA
With[{H=HarmonicNumber}, Table[Numerator[2*H[2*n+2] -H[n+1]]/2 , {n, 0, 50}]] (* G. C. Greubel, Jul 24 2023 *)
PROG
(PARI) a(n) = numerator(sum(j=0, n, 1/(2*j+1))); \\ Michel Marcus, Mar 16 2022
(Magma) [Numerator((2*HarmonicNumber(2*n+2) - HarmonicNumber(n+1)))/2: n in [0..40]]; // G. C. Greubel, Jul 24 2023
(SageMath) [numerator(2*harmonic_number(2*n+2, 1) - harmonic_number(n+1, 1))/2 for n in range(41)] # G. C. Greubel, Jul 24 2023
CROSSREFS
Cf. A001620, A025547, A025550, A111877 (denominators), A350670.
Sequence in context: A083355 A141763 A025550 * A067545 A004041 A220353
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Mar 16 2022
STATUS
approved