login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083355 Number of preferential arrangements for the set partitions of the n-set [1,2,3,...,n]. 12
1, 1, 4, 23, 175, 1662, 18937, 251729, 3824282, 65361237, 1241218963, 25928015368, 590852003947, 14586471744301, 387798817072596, 11046531316503163, 335640299372252595, 10835556229612637150, 370383732831919278037, 13363914680277923634517 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Labeled analog of A055887. See combstruct commands for more precise definition.

Stirling transform of A000670(n) = [1,3,13,75,...] is a(n) = [1,4,23,175,...]. - Michael Somos, Mar 04 2004

Row sums of A232598. So 2*a(n) is the number of formulas in first-order logic that have an n-place predicate, and don't include a negator. - Tilman Piesk, Nov 28 2013

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..150

K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem, arXiv:quant-ph/0312202, 2003; J. Phys. A 37 (2004), 3475-3487.

N. J. A. Sloane, Transforms

N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89.

Thomas Wieder, Further comments on A083355

Thomas Wieder, The number of certain rankings and hierarchies formed from labeled or unlabeled elements and sets, Applied Mathematical Sciences, vol. 3, 2009, no. 55, 2707 - 2724.

FORMULA

E.g.f.: 1/(2-exp(exp(x)-1)).

Representation as a double infinite series (Dobinski-type formula), in Maple notation: a(n) = sum(k^n/k!*sum(p^k/(2*exp(1))^p, p=1..infinity), k=1..infinity)/2, n=1, 2... . - Karol A. Penson and Pawel Blasiak (blasiak(AT)lptl.jussieu.fr), Nov 30 2003

a(n) ~ n!/(2 * c * (log c)^(n+1)) where c = 1 + log 2.

a(n) = Sum_{k=1..n} C(n, k)*Bell(k)*a(n-k). - Vladeta Jovovic, Jul 24 2003

a(n) = Sum_{i=1..n} Sum_{j=1..i} j!*Stirling2(i,j)*Stirling2(n,i). - Thomas Wieder, May 09 2005

a(n) = Sum_{k=1..n} S2(n,k) A000670(k).

a(n) = Sum_{k >= 0} Bell(n,k)/2^(k+1), where Bell(n,x) = Sum_{k = 0..n} Stirling2(n,k)*x^k denotes the n-th Bell or exponential polynomial. - Peter Bala, Jul 09 2014

EXAMPLE

Let the colon ":" be a separator between two levels. E.g. in {1,2}:{3} the set {1,2} is on the first level, the set {3} is on the second level.

n=2 gives A083355(2)=4 because we have {1,2} {1}{2} {1}:{2} {2}:{1}.

n=3 gives A083355(3)=23 because we have:

{1,2,3}

{1,2}{3} {1,2}:{3} {3}:{1,2}

{1,3}{2} {1,3}:{2} {2}:{1,3}

{2,3}{1} {2,3}:{1} {1}:{2,3}

{1}{2}{3}

{1}:{2}:{3}

{3}:{1}:{2}

{2}:{3}:{1}

{1}:{3}:{2}

{2}:{1}:{3}

{3}:{2}:{1}

{1}{2}:{3} {1}{3}:{2} {2}{3}:{1}

{1}:{2}{3} {2}:{1}{3} {3}:{1}{2}.

Examples for the unlabeled case A055887:

n=2 gives A055887(2)=3 because {1,1} {{1}:{1}} {2}

n=3 gives A055887(3)=8 because {1,1,1} {{1}:{1,1}} {{1,1}:{1}} {{1}:{1}:{1}} {1,2} {{1}:{2}} {{2}:{1}} {3}.

MAPLE

with(combstruct); SeqSetSetL := [T, {T=Sequence(S), S=Set(U, card >= 1), U=Set(Z, card >= 1)}, labeled]; A083355 := n-> count(SeqSetSetL, size=n);

A083355 := proc(n::integer) #with(combinat); local a, i, j; a:=0; for i from 1 to n do for j from 1 to i do a := a + j!*stirling2(i, j)*stirling2(n, i); od; od; print("n, a(n): ", n, a); end proc; # Thomas Wieder

A083355 := proc() local a, k, n; for n from 1 to 12 do a[n]:=0: for k from 1 to n do a[n]:=a[n]+stirling2(n, k)*A000670(k): od: od: print(a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], a[10], a[11], a[12]); end proc; A000670 := proc(n) local Result, k; Result:=0: for k from 1 to n do Result:=Result+stirling2(n, k)*k! od: end proc;

MATHEMATICA

Range[0, 18]!CoefficientList[Series[1/(2 - E^(E^x - 1)), {x, 0, 18}], x] (* Robert G. Wilson v, Jul 13 2004 *)

a[n_] := Sum[StirlingS2[n, k] PolyLog[-k, 1/2]/2, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-Fran├žois Alcover, Mar 30 2016 *)

PROG

(PARI) a(n)=if(n<0, 0, n!*polcoeff(1/(2-exp(exp(x+x*O(x^n))-1)), n))

CROSSREFS

Cf. A055887.

Cf. A000079, A000670, A034691, A055887, A075729, A232598.

Sequence in context: A084357 A075729 A127131 * A141763 A025550 A067545

Adjacent sequences:  A083352 A083353 A083354 * A083356 A083357 A083358

KEYWORD

nonn

AUTHOR

Thomas Wieder, Jun 11 2003, May 07 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 25 06:31 EST 2018. Contains 299643 sequences. (Running on oeis4.)