login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098249 Chebyshev polynomials S(n,291) + S(n-1,291) with Diophantine property. 3
1, 292, 84971, 24726269, 7195259308, 2093795732359, 609287362857161, 177300528795701492, 51593844592186277011, 15013631475797410908709, 4368915165612454388157308, 1271339299561748429542867919 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

(17*a(n))^2 - 293*b(n)^2 = -4 with b(n)=A098250(n) give all positive solutions of this Pell equation.

LINKS

Table of n, a(n) for n=0..11.

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

FORMULA

a(n)= (-2/17)*I*((-1)^n)*T(2*n+1, 17*I/2) with the imaginary unit I and Chebyshev's polynomials of the first kind. See the T-triangle A053120.

G.f.: (1+x)/(1-291*x+x^2).

a(n)= S(n, 291) + S(n-1, 291) = S(2*n, sqrt(293)), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x). S(n, 227)=A098245(n).

a(n)=291*a(n-1)-a(n-2), n>1 ; a(0)=1, a(1)=292 . [From Philippe Deléham, Nov 18 2008]

EXAMPLE

All positive solutions of Pell equation x^2 - 293*y^2 = -4 are

(17=17*1,1), (4964=17*292,290), (1444507=17*84971,84389),

(420346573=17*24726269,24556909), ...

CROSSREFS

Sequence in context: A221832 A238321 A231662 * A190925 A232280 A202888

Adjacent sequences:  A098246 A098247 A098248 * A098250 A098251 A098252

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Sep 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 15:13 EST 2016. Contains 279003 sequences.