OFFSET
1,2
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..100
Sergey Kitaev, Independent Sets on Path-Schemes, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.2.
Sean Li, Counting numerical semigroups by Frobenius number, multiplicity, and depth, arXiv:2208.14587 [math.CO], 2022.
FORMULA
a(n) = A326083(n) - 1. - Gus Wiseman, Jun 07 2019
EXAMPLE
a(4) = 6 because the only permissible subsets are {1}, {2}, {3}, {4}, {2,3}, {3,4}.
From Gus Wiseman, Jun 07 2019: (Start)
The a(1) = 1 through a(6) = 15 nonempty subsets of {1..n} containing none of their own non-singleton nonzero nonnegative linear combinations are:
{1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{2,3} {4} {4} {4}
{2,3} {5} {5}
{3,4} {2,3} {6}
{2,5} {2,3}
{3,4} {2,5}
{3,5} {3,4}
{4,5} {3,5}
{3,4,5} {4,5}
{4,6}
{5,6}
{3,4,5}
{4,5,6}
a(n) is also the number of nonempty subsets of {1..n} containing all of their own nonzero nonnegative linear combinations <= n. For example the a(1) = 1 through a(6) = 15 subsets are:
{1} {2} {2} {3} {3} {4}
{1,2} {3} {4} {4} {5}
{2,3} {2,4} {5} {6}
{1,2,3} {3,4} {2,4} {3,6}
{2,3,4} {3,4} {4,5}
{1,2,3,4} {3,5} {4,6}
{4,5} {5,6}
{2,4,5} {2,4,6}
{3,4,5} {3,4,6}
{2,3,4,5} {3,5,6}
{1,2,3,4,5} {4,5,6}
{2,4,5,6}
{3,4,5,6}
{2,3,4,5,6}
{1,2,3,4,5,6}
(End)
MATHEMATICA
Table[Length[Select[Subsets[Range[n], {1, n}], SubsetQ[#, Select[Plus@@@Tuples[#, 2], #<=n&]]&]], {n, 10}] (* Gus Wiseman, Jun 07 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Mar 23 2005
EXTENSIONS
More terms from David Wasserman, Apr 16 2008
STATUS
approved