login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000740 Number of 2n-bead balanced binary necklaces of fundamental period 2n, equivalent to reversed complement; also Dirichlet convolution of b_n=2^(n-1) with mu(n); also number of components of Mandelbrot set corresponding to Julia sets with an attractive n-cycle.
(Formerly M2582 N1021)
19
1, 1, 3, 6, 15, 27, 63, 120, 252, 495, 1023, 2010, 4095, 8127, 16365, 32640, 65535, 130788, 262143, 523770, 1048509, 2096127, 4194303, 8386440, 16777200, 33550335, 67108608, 134209530, 268435455, 536854005, 1073741823, 2147450880 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Also number of compositions of n into relatively prime parts. Also number of subsets of {1,2,..,n} containing n and consisting of relatively prime numbers. - Vladeta Jovovic, Aug 13 2003

Also number of perfect parity patterns that have exactly n columns (see A118141). - Don Knuth, May 11 2006

a(n) is odd if and only if n is squarefree (Tim Keller). - Emeric Deutsch, Apr 27 2007

a(n) is a multiple of 3 for all n>=3 (see Problem 11161 link). - Emeric Deutsch, Aug 13 2008

Moebius transform (A054525) of [1, 2, 4, 8,...]; = row sums of triangle A143424. - Gary W. Adamson, Aug 14 2008

a(n) is the number of monic irreducible polynomials with nonzero constant coefficient in GF(2)[x] of degree n. - Michel Marcus, Oct 30 2016

REFERENCES

H. O. Peitgen and P. H. Richter, The Beauty of Fractals, Springer-Verlag; contribution by A. Douady, p. 165.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=1..300

Hunki Baek, Sejeong Bang, Dongseok Kim, Jaeun Lee, A bijection between aperiodic palindromes and connected circulant graphs, arXiv:1412.2426 [math.CO], 2014. See Table 2.

R. Chapman, D. Knuth, Problem 11243, Perfect Parity Patterns, Am. Math. Monthly 115 (7) (2008) p 668, function c(n).

E. Deutsch and Lafayette College Problem Group, Problem 11161: Compositions without Common Factors, American Mathematical Monthly, vol. 114, No. 4, 2007, p. 363.

H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.

R. Munafo, Enumeration of Period-N Mu-Atoms

Index entries for sequences related to Lyndon words

FORMULA

a(n) = sum_{d|n} mu(n/d)*2^(d-1). Furthermore, sum_{d|n} a(d) = 2^{n-1}.

a(n) = A027375(n)/2 = A038199(n)/2.

a(n) = sum_{k=0..n} A051168(n,k)*k. - Max Alekseyev, Apr 09 2013

Recurrence relation: a(n) = 2^(n-1) - Sum_{d|n,d>1} a(n/d). (Lafayette College Problem Group; see the Maple program). - Emeric Deutsch, Apr 27 2007

EXAMPLE

For n=4, there are 6 compositions of n into coprime parts: <3,1>, <2,1,1>, <1,3>, <1,2,1>, <1,1,2>, and <1,1,1,1>.

MAPLE

with(numtheory): a[1]:=1: a[2]:=1: for n from 3 to 32 do div:=divisors(n): a[n]:=2^(n-1)-sum(a[n/div[j]], j=2..tau(n)) od: seq(a[n], n=1..32); # Emeric Deutsch, Apr 27 2007

with(numtheory); A000740:=n-> add(mobius(n/d)*2^(d-1), d in divisors(n)); # N. J. A. Sloane, Oct 18 2012

MATHEMATICA

a[n_] := Sum[ MoebiusMu[n/d]*2^(d - 1), {d, Divisors[n]}]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Feb 03 2012, after Pari *)

PROG

(PARI) a(n) = sumdiv(n, d, moebius(n/d)*2^(d-1))

CROSSREFS

Cf. A003239, A022553, A034738, A035928, A000837, A216954, A054525, A143424, A008683, A178472, A167606, A051168, A056267, A038199.

Equals A027375/2.

See A056278 for a variant.

Sequence in context: A264686 A165729 A056278 * A161625 A234848 A069712

Adjacent sequences:  A000737 A000738 A000739 * A000741 A000742 A000743

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Connection with Mandelbrot set discovered by Warren D. Smith and proved by Robert Munafo, Feb 06 2000

Ambiguous term a(0) removed by Max Alekseyev, Jan 02 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 12:54 EST 2016. Contains 278781 sequences.