OFFSET
1,1
COMMENTS
Please, refer to the general explanation in A212697.
This sequence is for base b=8 (see formula), corresponding to spin S=(b-1)/2=7/2.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 1..100
Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
Index entries for linear recurrences with constant coefficients, signature (16,-64).
FORMULA
a(n) = n*(b-1)*b^(n-1). For this sequence, set b=8.
a(n) = 16*a(n-1)-64*a(n-2). - Colin Barker, Jun 16 2015
G.f.: 7*x / (8*x-1)^2. Colin Barker, Jun 16 2015
MATHEMATICA
LinearRecurrence[{16, -64}, {7, 112}, 30] (* Harvey P. Dale, Feb 11 2016 *)
PROG
(PARI) mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212702.txt", n, " ", mtrans(n, 8)))
(PARI) Vec(7*x/(8*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stanislav Sykora, May 25 2012
STATUS
approved