This site is supported by donations to The OEIS Foundation.

# CiteI

From OeisWiki

# CiteI

## About this page

- This is part of the series of OEIS Wiki pages that list works citing the OEIS.
- Additions to these pages are welcomed.
- But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
- If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
- Works are arranged in alphabetical order by author's last name.
- Works with the same set of authors are arranged by date, starting with the oldest.
- This section lists works in which the first author's name begins with I.
- The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
- For further information, see the main page for
**Works Citing OEIS**.

## References

- Ionut E. Iacob, T. Bruce McLean and Hua Wang, The V-flex, Triangle Orientation, and Catalan Numbers in Hexaflexagons, The College Mathematics Journal, Vol. 43, No. 1 (January 2012), pp. 6-10.
- Douglas E. Iannucci, "The Kaprekar Numbers", J. Integer Sequences, Volume 3, 2000, Article 00.1.2.
- Douglas E. Iannucci, On the Equation σ(n) = n + φ(n), Journal of Integer Sequences, Vol. 20 (2017), Article 17.6.2.
- Douglas E. Iannucci and Bertrum Foster, "Kaprekar Triples", J. Integer Sequences, Volume 8, 2005, Article 05.4.8.
- Douglas E. Iannucci and Donna Mills-Taylor, "On Generalizing the Connell Sequence", J. Integer Sequences, Volume 2, 1999, Article 99.1.7.
- Douglas E. Iannucci, Deng Moujie and Graeme L. Cohen, "On Perfect Totient Numbers", J. Integer Sequences, Volume 6, 2003, Article 03.4.5.
- Aminu A. Ibrahim, An enumeration scheme and some algebraic properties of a special (132)-avoiding class of permutation patterns, Trends Apl. Sci. Res. 2 (4) (2007) 334-350
- A. M. Ibrahim, Extension of factorial concept to negative numbers, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, 2, 30-42; http://www.nntdm.net/papers/nntdm-19/NNTDM-19-2-30_42.pdf
- G. R. Ibrahim, Some combinatorial results on Green's relation of partial injective transformation semigroup, Journal of Semigroup Theory and Applications, Vol 2015 (2015), Article ID 4
- A. M. Ibrahim, A. E. Ezugwu, M. Isa, A Comparative Study of Positive and Negative Factorials, Mathematical Theory and Modeling, Vol. 5, No. 4, 2015, http://iiste.org/Journals/index.php/MTM/article/viewFile/21566/22120
- Aminu Alhaji Ibrahim, Sa’idu Isah Abubaka, Aunu Integer Sequence as Non-Associative Structure and Their Graph Theoretic Properties, Advances in Pure Mathematics, 2016, 6, 409-419; doi:10.4236/apm.2016.66028
- IFL Science, 15 Paradoxes That Will Make Your Head Explode, no date; http://www.iflscience.com/editors-blog/15-paradoxes-that-will-make-your-head-explode/all/
- Kentaro Ihara, Derivations and automorphisms on non-commutative power series, Journal of Pure and Applied Algebra, Volume 216, Issue 1, January 2012, Pages 192-201; doi:10.1016/j.jpaa.2011.06.004
- M. Iida, On Triangle of numbers, Josai Mathematical Monographs, Vol. 5 (2012), 61-70; http://libir.josai.ac.jp/infolib/user_contents/pdf/JOS-13447777-05_61.pdf
- Soichi Ikeda and Kaneaki Matsuoka, On the Lcm-Sum Function, Journal of Integer Sequences, Vol. 17 (2014), Article 14.1.7
- S. Ikeda, K. Matsuoka, On transcendental numbers generated by certain integer sequences, Siauliai Math. Semin., 8 (16) 2013, 63-69; http://siauliaims.su.lt/pdfai/2013/Iked-Mats-2013.pdf
- Aleksandar Ilic and Andreja Ilic, doi:10.2298/FIL1103191I On the number of restricted Dyck paths, Filomat 25:3 (2011), 191-201; PDF
- A. Ilic, S. Klavzar and Y. Rho, Parity index of binary words and powers of prime words, http://www.fmf.uni-lj.si/~klavzar/preprints/BalancedFibo-submit.pdf, 2012
- L. Ilie and V. Mitrana, Binary Self-Adding Sequences and Languages, TUCS Technical Reports No. 18, May 1996.
- N. Ilievska, D. Gligoroski, Error-Detecting Code Using Linear Quasigroups, ICT Innovations 2014, Advances in Intelligent Systems and Computing Volume 311, 2015, pp 309-318.
- Images des Maths, CNRS, Lagrange et la variation des théorèmes (2013)
- Ergal Imamoglu, Algorithms for solving linear differential equations with rational function coefficients, Dissertation, Florida State University, 2017.
- E. Imamoglu, M. van Hoeij, Computing Hypergeometric Solutions of Second Order Linear Differential Equations using Quotients of Formal Solutions, in ISSAC’15, July 6–9, 2015, Bath, United Kingdom, 2015, doi:10.1145/2755996.2756651; http://www.math.fsu.edu/~hoeij/papers/2015/ISSAC_2015_submission_27.pdf.
- K. S. Immink, Coding Schemes for Multi-Level Channels that are Intrinsically Resistant Against Unknown Gain and/or Offset Using Reference Symbols, http://www.exp-math.uni-essen.de/~immink/pdf/jsac13.pdf, 2013.
- Yoshinari Inaba, "Hyper-Sums of Powers of Integers and the Akiyama-Tanigawa Matrix", J. Integer Sequences, Volume 8, 2005, Article 05.2.7.
- International Mathematical Union, Minutes of 17th Meeting of Organizing Committee, 2013; http://www.mathunion.org/fileadmin/CEIC/Minutes/17th_Minutes-OC.pdf
- Eugen J. Ionascu, "A Parametrization of Equilateral Triangles Having Integer Coordinates", J. Integer Sequences, Volume 10, 2007, Article 07.6.7.
- Eugen J. Ionascu, A characterization of regular tetrahedra in Z^3 (2007); arXiv:0712.3951; Journal of Number Theory, Volume 129, Issue 5, May 2009, Pages 1066-1074.
- Eugen J. Ionascu, arXiv:math/0701111 Counting all equilateral triangles in {0,1,2,...,n}^3, (2007).
- E. J. Ionascu, Regular tetrahedra whose vertices have integer coordinates, Acta Math. Univ. Comenianae, Vol. LXXX, 2 (2011), pp. 161-170
- E. J. Ionascu, Ehrhart's polynomial for equilateral triangles in Z^3, Arxiv preprint arXiv:1107.0695, 2011.
- E. J. Ionascu, Lattice Platonic Solids and their Ehrhart polynomial, Arxiv preprint arXiv:1111.1150, 2011
- E. J. Ionascu, Ehrhart polynomial for lattice squares, cubes and hypercubes, arXiv preprint arXiv:1508.03643, 2015
- Eugen J. Ionascu, Bisecting binomial coefficients (II), arXiv preprint arXiv:1712.01243, 2017
- Ionascu, Eugen J.; and Markov, Andrei; doi:10.1016/j.jnt.2010.07.008 Platonic solids in Z^3, J. Number Theory 131 (2011), no. 1, 138-145.
- Eugen J Ionascu, T Martinsen, P Stanica, Bisecting binomial coefficients, arXiv preprint arXiv:1610.02063, 2016
- Eugen J. Ionascu and R. A. Obando, Cubes in {0,1,...,n}^3, INTEGERS, 12A (2012), #A9.
- Eugen J. Ionaşcu, A variation on bisecting the binomial coefficients, Discrete Applied Mathematics (2018). doi:10.1016/j.dam.2018.04.026
- Lawrence Ip, Catalan numbers and random matrices (1999)
- J. Iraids, K. Balodis, J. Cernenoks, M. Opmanis, R. Opmanis and K. Podnieks, Integer Complexity: Experimental and Analytical Results. Arxiv preprint arXiv:1203.6462, 2012
- A. T. Irish, F. Quitin, U. Madhow, M. Rodwell, Achieving multiple degrees of freedom in long-range mm-wave MIMO channels using randomly distributed relays; http://www.ece.ucsb.edu/wcsl/Publications/Andrew_Asilomar13.pdf, 2014.
- E. Irurozki Sampling and learning distance-based probability models for permutation spaces, PhD Dissertation, Department of Computer Science and Artificial Intelligence of the University of the Basque Country, 2015; http://www.sc.ehu.es/ccwbayes/isg/administrator/components/com_jresearch/files/theses/tesis_ekhine_irurozki.pdf
- E. Irurozki, B. Calvo, J. Ceberio, J. A. Lozano, Mallows model under the Ulam distance: a feasible combinatorial approach, 2014; http://events.csa.iisc.ernet.in/NIPS-14-rankingsws/Papers/4_Mallows_model_under_Ulam_distance%20(2).pdf
- E. Irurozki, B. Calvo, J. A. Lozano, An R package for permutations, Mallows and Generalized Mallows models, 2014; https://addi.ehu.es/bitstream/10810/11238/1/tr14-5.pdf
- E. Irurozki, B. Calvo, J. A. Lozano, Sampling and learning the Mallows and Weighted Mallows models under the Hamming distance, 2014; https://addi.ehu.es/bitstream/10810/11240/1/tr14-3.pdf
- E. Irurozki, B. Calvo, J. A. Lozano, Sampling and learning the Mallows model under the Ulam distance, 2014; https://addi.ehu.es/bitstream/10810/11241/1/tr14-4.pdf
- Ekhine Irurozki, B Calvo, JA Lozano, PerMallows: An R Package for Mallows and Generalized Mallows Models, Journal of Statistical Software, August 2016, Volume 71, Issue 12. doi: 10.18637/jss.v071.i12
- Ekhine Irurozki, Borja Calvo, Jose A. Lozano, Mallows and Generalized Mallows Model for Matchings, September 2016.
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
- Veronika Irvine, Stephen Melczer, Frank Ruskey, Vertically constrained Motzkin-like paths inspired by bobbin lace, arXiv:1804.08725 [math.CO], 2018. (A002426, A026519, A026495, A026520, A026521, A026522, A026523, A026524, A082758, A099250, A214938)
- M. Isachenkov, I. Kirsch, V. Schomerus, Chiral Primaries in Strange Metals, arXiv preprint arXiv:1403.6857, 2014
- Aaron Isaksen, M Ismail, SJ Brams, A Nealen, Catch-Up: A Game in Which the Lead Alternates, G&PD, vol. 1, no. 2, 2015, pp. 38–49; http://game.engineering.nyu.edu/wp-content/uploads/2015/10/catch-up-a-game-in-which-the-lead-alternates-2015.pdf, 2015
- ABRAHAM ISGUR, VITALY KUZNETSOV AND STEPHEN M. TANNY, A combinatorial approach for solving certain nested recursions with non-slow solutions, Arxiv preprint arXiv:1202.0276, 2012
- A. Isgur, R. Lech, S. Moore, S. Tanny, Y. Verberne, and Y. Zhang, Constructing New Families of Nested Recursions with Slow Solutions, SIAM J. Discrete Math., 30(2), 2016, 1128–1147. (20 pages); doi:10.1137/15M1040505
- A. Isgur, D. Reiss, Trees and meta-Fibonacci sequences, El. J. Combinat. 16 (2009) #R129
- Sh. T. Ishmukhametov, F. F. Sharifullina, On distribution of semiprime numbers, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, No. 8, pp. 53-59. English translation in Russian Mathematics, 2014, Volume 58, Issue 8 , pp 43-48; https://doi.org/10.3103/S1066369X14080052
- Dan Ismailescu and Peter Seho Park, On Pairwise Intersections of the Fibonacci, Sierpinski, and Riesel Sequences, Journal of Integer Sequences, 16 (2013), #13.9.8.
- Dan Ismailescu and Peter C. Shim, On numbers that cannot be expressed as a plus-minus weighted sum of a Fibonacci number and a prime, INTEGERS 14 (2014), #A65.
- Yukinao Isokawa, Series-Parallel Circuits and Continued Fractions, Applied Mathematical Sciences, Vol. 10, 2016, no. 27, 1321 - 1331; doi:10.12988/ams.2016.63103.
- Yukinao Isokawa, Listing up Combinations of Resistances, Bulletin of the Kagoshima University Faculty of Education. Bulletin of the Faculty of Education, Kagoshima University. Natural science, Vol. 67 (2016), pp. 1-8; Http://ir.kagoshima-u.ac.jp/bitstream/10232/26821/2/ Isokawa.pdf
- Genta Ito, Least change in the Determinant or Permanent of a matrix under perturbation of a single element: continuous and discrete cases (2008); arXiv:0805.2081
- Genta Ito, Approximate formulation of the probability that the Determinant or Permanent of a matrix undergoes the least change under perturbation of a single element (2008); arXiv:0805.2083
- A Itzhakov, M Codish, Breaking Symmetries in Graph Search with Canonizing Sets, arXiv preprint arXiv:1511.08205, 2015
- A. Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
- A. IVANYI, L. LUCZ, T. MATUSZKA and S. PIRZADA, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 260-288.
- A. Ivanyi and J. E. Schoenfield, Deciding football sequences, Acta Univ. Sapientiae, Informatica, 4, 1 (2012) 130-183, http://www.acta.sapientia.ro/acta-info/C4-1/info41-7.pdf.
- H. Iwashita, J. Kawahara and S.-I. Minato, ZDD-Based Computation of the Number of Paths in a Graph, Division of Computer Science, Report Series A, September 18, 2012, Hokkaido University, 2012; http://www-alg.ist.hokudai.ac.jp/~thomas/TCSTR/tcstr_12_60/tcstr_12_60.pdf.
- Kozue Iwata, Shiro Ishiwata and Shin-ichi Nakano, A Compact Encoding of Unordered Binary Trees, in Theory and Applications of Models of Computation, Lecture Notes in Computer Science, 2011, Volume 6648/2011, 106-113, doi:10.1007/978-3-642-20877-5_11
- K. Viswanathan Iyer, A case for Intranet-based Online portal for undergraduate Computer Science education, arXiv:1408.1032
- V. K. Iyer, A dynamic intranet-based online-portal support for Computer Science teaching, in Education and Information Technologies The Official Journal of the IFIP Technical Committee on Education, ISSN: 1360-2357 (Print) 1573-7608 (Online), 2016; doi:10.1007/s10639-015-9459-4. Also arXiv:1701.02093
- Anton Izosimov, Matrix polynomials, generalized Jacobians, and graphical zonotopes, arXiv preprint arXiv:1506.05179, 2015

## About this page

- This is part of the series of OEIS Wiki pages that list works citing the OEIS.
- Additions to these pages are welcomed.
- But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
- If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
- Works are arranged in alphabetical order by author's last name.
- Works with the same set of authors are arranged by date, starting with the oldest.
- The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
- For further information, see the main page for
**Works Citing OEIS**.