This site is supported by donations to The OEIS Foundation.

CiteI

From OeisWiki
Jump to: navigation, search


CiteI

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with I.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

References

  1. Ionut E. Iacob, T. Bruce McLean and Hua Wang, The V-flex, Triangle Orientation, and Catalan Numbers in Hexaflexagons, The College Mathematics Journal, Vol. 43, No. 1 (January 2012), pp. 6-10.
  2. Douglas E. Iannucci, "The Kaprekar Numbers", J. Integer Sequences, Volume 3, 2000, Article 00.1.2.
  3. Douglas E. Iannucci, On the Equation σ(n) = n + φ(n), Journal of Integer Sequences, Vol. 20 (2017), Article 17.6.2.
  4. Douglas E. Iannucci and Bertrum Foster, "Kaprekar Triples", J. Integer Sequences, Volume 8, 2005, Article 05.4.8.
  5. Douglas E. Iannucci and Donna Mills-Taylor, "On Generalizing the Connell Sequence", J. Integer Sequences, Volume 2, 1999, Article 99.1.7.
  6. Douglas E. Iannucci, Deng Moujie and Graeme L. Cohen, "On Perfect Totient Numbers", J. Integer Sequences, Volume 6, 2003, Article 03.4.5.
  7. Aminu A. Ibrahim, An enumeration scheme and some algebraic properties of a special (132)-avoiding class of permutation patterns, Trends Apl. Sci. Res. 2 (4) (2007) 334-350
  8. A. M. Ibrahim, Extension of factorial concept to negative numbers, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, 2, 30-42; http://www.nntdm.net/papers/nntdm-19/NNTDM-19-2-30_42.pdf
  9. G. R. Ibrahim, Some combinatorial results on Green's relation of partial injective transformation semigroup, Journal of Semigroup Theory and Applications, Vol 2015 (2015), Article ID 4
  10. A. M. Ibrahim, A. E. Ezugwu, M. Isa, A Comparative Study of Positive and Negative Factorials, Mathematical Theory and Modeling, Vol. 5, No. 4, 2015, http://iiste.org/Journals/index.php/MTM/article/viewFile/21566/22120
  11. Aminu Alhaji Ibrahim, Sa’idu Isah Abubaka, Aunu Integer Sequence as Non-Associative Structure and Their Graph Theoretic Properties, Advances in Pure Mathematics, 2016, 6, 409-419; doi:10.4236/apm.2016.66028
  12. IFL Science, 15 Paradoxes That Will Make Your Head Explode, no date; http://www.iflscience.com/editors-blog/15-paradoxes-that-will-make-your-head-explode/all/
  13. Kentaro Ihara, Derivations and automorphisms on non-commutative power series, Journal of Pure and Applied Algebra, Volume 216, Issue 1, January 2012, Pages 192-201; doi:10.1016/j.jpaa.2011.06.004
  14. M. Iida, On Triangle of numbers, Josai Mathematical Monographs, Vol. 5 (2012), 61-70; http://libir.josai.ac.jp/infolib/user_contents/pdf/JOS-13447777-05_61.pdf
  15. Soichi Ikeda and Kaneaki Matsuoka, On the Lcm-Sum Function, Journal of Integer Sequences, Vol. 17 (2014), Article 14.1.7
  16. S. Ikeda, K. Matsuoka, On transcendental numbers generated by certain integer sequences, Siauliai Math. Semin., 8 (16) 2013, 63-69; http://siauliaims.su.lt/pdfai/2013/Iked-Mats-2013.pdf
  17. Aleksandar Ilic and Andreja Ilic, doi:10.2298/FIL1103191I On the number of restricted Dyck paths, Filomat 25:3 (2011), 191-201; PDF
  18. A. Ilic, S. Klavzar and Y. Rho, Parity index of binary words and powers of prime words, http://www.fmf.uni-lj.si/~klavzar/preprints/BalancedFibo-submit.pdf, 2012
  19. L. Ilie and V. Mitrana, Binary Self-Adding Sequences and Languages, TUCS Technical Reports No. 18, May 1996.
  20. N. Ilievska, D. Gligoroski, Error-Detecting Code Using Linear Quasigroups, ICT Innovations 2014, Advances in Intelligent Systems and Computing Volume 311, 2015, pp 309-318.
  21. Images des Maths, CNRS, Lagrange et la variation des théorèmes (2013)
  22. Ergal Imamoglu, Algorithms for solving linear differential equations with rational function coefficients, Dissertation, Florida State University, 2017.
  23. E. Imamoglu, M. van Hoeij, Computing Hypergeometric Solutions of Second Order Linear Differential Equations using Quotients of Formal Solutions, in ISSAC’15, July 6–9, 2015, Bath, United Kingdom, 2015, doi:10.1145/2755996.2756651; http://www.math.fsu.edu/~hoeij/papers/2015/ISSAC_2015_submission_27.pdf.
  24. K. S. Immink, Coding Schemes for Multi-Level Channels that are Intrinsically Resistant Against Unknown Gain and/or Offset Using Reference Symbols, http://www.exp-math.uni-essen.de/~immink/pdf/jsac13.pdf, 2013.
  25. Yoshinari Inaba, "Hyper-Sums of Powers of Integers and the Akiyama-Tanigawa Matrix", J. Integer Sequences, Volume 8, 2005, Article 05.2.7.
  26. International Mathematical Union, Minutes of 17th Meeting of Organizing Committee, 2013; http://www.mathunion.org/fileadmin/CEIC/Minutes/17th_Minutes-OC.pdf
  27. Eugen J. Ionascu, "A Parametrization of Equilateral Triangles Having Integer Coordinates", J. Integer Sequences, Volume 10, 2007, Article 07.6.7.
  28. Eugen J. Ionascu, A characterization of regular tetrahedra in Z^3 (2007); arXiv:0712.3951; Journal of Number Theory, Volume 129, Issue 5, May 2009, Pages 1066-1074.
  29. Eugen J. Ionascu, arXiv:math/0701111 Counting all equilateral triangles in {0,1,2,...,n}^3, (2007).
  30. E. J. Ionascu, Regular tetrahedra whose vertices have integer coordinates, Acta Math. Univ. Comenianae, Vol. LXXX, 2 (2011), pp. 161-170
  31. E. J. Ionascu, Ehrhart's polynomial for equilateral triangles in Z^3, Arxiv preprint arXiv:1107.0695, 2011.
  32. E. J. Ionascu, Lattice Platonic Solids and their Ehrhart polynomial, Arxiv preprint arXiv:1111.1150, 2011
  33. E. J. Ionascu, Ehrhart polynomial for lattice squares, cubes and hypercubes, arXiv preprint arXiv:1508.03643, 2015
  34. Eugen J. Ionascu, Bisecting binomial coefficients (II), arXiv preprint arXiv:1712.01243, 2017
  35. Ionascu, Eugen J.; and Markov, Andrei; doi:10.1016/j.jnt.2010.07.008 Platonic solids in Z^3, J. Number Theory 131 (2011), no. 1, 138-145.
  36. Eugen J Ionascu, T Martinsen, P Stanica, Bisecting binomial coefficients, arXiv preprint arXiv:1610.02063, 2016
  37. Eugen J. Ionascu and R. A. Obando, Cubes in {0,1,...,n}^3, INTEGERS, 12A (2012), #A9.
  38. Eugen J. Ionaşcu, A variation on bisecting the binomial coefficients, Discrete Applied Mathematics (2018). doi:10.1016/j.dam.2018.04.026
  39. Lawrence Ip, Catalan numbers and random matrices (1999)
  40. J. Iraids, K. Balodis, J. Cernenoks, M. Opmanis, R. Opmanis and K. Podnieks, Integer Complexity: Experimental and Analytical Results. Arxiv preprint arXiv:1203.6462, 2012
  41. A. T. Irish, F. Quitin, U. Madhow, M. Rodwell, Achieving multiple degrees of freedom in long-range mm-wave MIMO channels using randomly distributed relays; http://www.ece.ucsb.edu/wcsl/Publications/Andrew_Asilomar13.pdf, 2014.
  42. E. Irurozki Sampling and learning distance-based probability models for permutation spaces, PhD Dissertation, Department of Computer Science and Artificial Intelligence of the University of the Basque Country, 2015; http://www.sc.ehu.es/ccwbayes/isg/administrator/components/com_jresearch/files/theses/tesis_ekhine_irurozki.pdf
  43. E. Irurozki, B. Calvo, J. Ceberio, J. A. Lozano, Mallows model under the Ulam distance: a feasible combinatorial approach, 2014; http://events.csa.iisc.ernet.in/NIPS-14-rankingsws/Papers/4_Mallows_model_under_Ulam_distance%20(2).pdf
  44. E. Irurozki, B. Calvo, J. A. Lozano, An R package for permutations, Mallows and Generalized Mallows models, 2014; https://addi.ehu.es/bitstream/10810/11238/1/tr14-5.pdf
  45. E. Irurozki, B. Calvo, J. A. Lozano, Sampling and learning the Mallows and Weighted Mallows models under the Hamming distance, 2014; https://addi.ehu.es/bitstream/10810/11240/1/tr14-3.pdf
  46. E. Irurozki, B. Calvo, J. A. Lozano, Sampling and learning the Mallows model under the Ulam distance, 2014; https://addi.ehu.es/bitstream/10810/11241/1/tr14-4.pdf
  47. Ekhine Irurozki, B Calvo, JA Lozano, PerMallows: An R Package for Mallows and Generalized Mallows Models, Journal of Statistical Software, August 2016, Volume 71, Issue 12. doi: 10.18637/jss.v071.i12
  48. Ekhine Irurozki, Borja Calvo, Jose A. Lozano, Mallows and Generalized Mallows Model for Matchings, September 2016.
  49. Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
  50. Veronika Irvine, Stephen Melczer, Frank Ruskey, Vertically constrained Motzkin-like paths inspired by bobbin lace, arXiv:1804.08725 [math.CO], 2018. (A002426, A026519, A026495, A026520, A026521, A026522, A026523, A026524, A082758, A099250, A214938)
  51. M. Isachenkov, I. Kirsch, V. Schomerus, Chiral Primaries in Strange Metals, arXiv preprint arXiv:1403.6857, 2014
  52. Aaron Isaksen, M Ismail, SJ Brams, A Nealen, Catch-Up: A Game in Which the Lead Alternates, G&PD, vol. 1, no. 2, 2015, pp. 38–49; http://game.engineering.nyu.edu/wp-content/uploads/2015/10/catch-up-a-game-in-which-the-lead-alternates-2015.pdf, 2015
  53. ABRAHAM ISGUR, VITALY KUZNETSOV AND STEPHEN M. TANNY, A combinatorial approach for solving certain nested recursions with non-slow solutions, Arxiv preprint arXiv:1202.0276, 2012
  54. A. Isgur, R. Lech, S. Moore, S. Tanny, Y. Verberne, and Y. Zhang, Constructing New Families of Nested Recursions with Slow Solutions, SIAM J. Discrete Math., 30(2), 2016, 1128–1147. (20 pages); doi:10.1137/15M1040505
  55. A. Isgur, D. Reiss, Trees and meta-Fibonacci sequences, El. J. Combinat. 16 (2009) #R129
  56. Sh. T. Ishmukhametov, F. F. Sharifullina, On distribution of semiprime numbers, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, No. 8, pp. 53-59. English translation in Russian Mathematics, 2014, Volume 58, Issue 8 , pp 43-48; https://doi.org/10.3103/S1066369X14080052
  57. Dan Ismailescu and Peter Seho Park, On Pairwise Intersections of the Fibonacci, Sierpinski, and Riesel Sequences, Journal of Integer Sequences, 16 (2013), #13.9.8.
  58. Dan Ismailescu and Peter C. Shim, On numbers that cannot be expressed as a plus-minus weighted sum of a Fibonacci number and a prime, INTEGERS 14 (2014), #A65.
  59. Yukinao Isokawa, Series-Parallel Circuits and Continued Fractions, Applied Mathematical Sciences, Vol. 10, 2016, no. 27, 1321 - 1331; doi:10.12988/ams.2016.63103.
  60. Yukinao Isokawa, Listing up Combinations of Resistances, Bulletin of the Kagoshima University Faculty of Education. Bulletin of the Faculty of Education, Kagoshima University. Natural science, Vol. 67 (2016), pp. 1-8; Http://ir.kagoshima-u.ac.jp/bitstream/10232/26821/2/ Isokawa.pdf
  61. Genta Ito, Least change in the Determinant or Permanent of a matrix under perturbation of a single element: continuous and discrete cases (2008); arXiv:0805.2081
  62. Genta Ito, Approximate formulation of the probability that the Determinant or Permanent of a matrix undergoes the least change under perturbation of a single element (2008); arXiv:0805.2083
  63. A Itzhakov, M Codish, Breaking Symmetries in Graph Search with Canonizing Sets, arXiv preprint arXiv:1511.08205, 2015
  64. A. Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
  65. A. IVANYI, L. LUCZ, T. MATUSZKA and S. PIRZADA, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 260-288.
  66. A. Ivanyi and J. E. Schoenfield, Deciding football sequences, Acta Univ. Sapientiae, Informatica, 4, 1 (2012) 130-183, http://www.acta.sapientia.ro/acta-info/C4-1/info41-7.pdf.
  67. H. Iwashita, J. Kawahara and S.-I. Minato, ZDD-Based Computation of the Number of Paths in a Graph, Division of Computer Science, Report Series A, September 18, 2012, Hokkaido University, 2012; http://www-alg.ist.hokudai.ac.jp/~thomas/TCSTR/tcstr_12_60/tcstr_12_60.pdf.
  68. Kozue Iwata, Shiro Ishiwata and Shin-ichi Nakano, A Compact Encoding of Unordered Binary Trees, in Theory and Applications of Models of Computation, Lecture Notes in Computer Science, 2011, Volume 6648/2011, 106-113, doi:10.1007/978-3-642-20877-5_11
  69. K. Viswanathan Iyer, A case for Intranet-based Online portal for undergraduate Computer Science education, arXiv:1408.1032
  70. V. K. Iyer, A dynamic intranet-based online-portal support for Computer Science teaching, in Education and Information Technologies The Official Journal of the IFIP Technical Committee on Education, ISSN: 1360-2357 (Print) 1573-7608 (Online), 2016; doi:10.1007/s10639-015-9459-4. Also arXiv:1701.02093
  71. Anton Izosimov, Matrix polynomials, generalized Jacobians, and graphical zonotopes, arXiv preprint arXiv:1506.05179, 2015

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.