login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034428 E.g.f. 1-(1-x)*(tan(x)+sec(x)). 5
0, 0, 1, 1, 3, 9, 35, 155, 791, 4529, 28839, 201939, 1542739, 12767689, 113794603, 1086657403, 11068604847, 119790363489, 1372696498127, 16603828720547, 211406514019115, 2826296899863929, 39584082775592211, 579600224535319371 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Also: number of permutations on n elements having the descent pattern: up, up, down, up, down, ...; a(n) = n * E_{n-1} - E_{n} where E_{n} denotes the Euler numbers, see sequence A000111. - Richard Ehrenborg, Feb 12 2002

REFERENCES

R. Ehrenborg and S. Mahajan, Maximizing the descent statistic, Annals Combin., 2 (1998), no. 2, 111-129.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..102

Miklós Bóna, István Mező, Limiting Probabilities for Vertices of a Given Rank in 1-2 Trees, The Electronic Journal of Combinatorics (2019) Vol. 26, No. 3, P#3.41.

M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550, 2013. - From N. J. A. Sloane, Feb 13 2013

FORMULA

E.g.f.: 1-(1-x)*(tan(x)+sec(x)).

E.g.f.: E(x)=x + x*(x-1)/U(0) where U(k)= 4k + 1 - x/(2 - x/(4k + 3 + x/(2 + x/U(k+1)))); (continued fraction, 4- step). - Sergei N. Gladkovskii, Jun 22 2012

E.g.f.: x + 2*x*(x-1)/(U(0)-x) where U(k)= 4*k+2 - x^2/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 31 2013

a(n) ~ n!*(2-4/Pi)*(2/Pi)^n - Vaclav Kotesovec, Jun 01 2013

MATHEMATICA

With[{nn=30}, Drop[CoefficientList[Series[1-(1-x)(Tan[x]+Sec[x]), {x, 0, nn}], x]Range[0, nn]!, 2]] (* Harvey P. Dale, Jan 22 2012 *)

PROG

(PARI) a(n)=n!*polcoeff(1-(1-x)*(tan(x+x*O(x^n))+1/cos(x+x*O(x^n))),

CROSSREFS

Essentially the same as A131281(n)/2.

Sequence in context: A217924 A030268 A097277 * A101880 A222398 A107894

Adjacent sequences:  A034425 A034426 A034427 * A034429 A034430 A034431

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 13:18 EST 2020. Contains 332306 sequences. (Running on oeis4.)