login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097767 Pell equation solutions (11*b(n))^2 - 122*a(n)^2 = -1 with b(n):=A097766(n), n>=0. 5
1, 485, 235709, 114554089, 55673051545, 27056988496781, 13149640736384021, 6390698340894137425, 3105866244033814404529, 1509444603902092906463669, 733586971630173118726938605, 356521758767660233608385698361 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..372

Tanya Khovanova, Recursive Sequences

Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (486, -1).

FORMULA

a(n) = S(n, 2*243) - S(n-1, 2*243) = T(2*n+1, sqrt(122))/sqrt(122), with Chebyshev polynomials of the 2nd and first kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x); and A053120 for the T-triangle.

a(n) = ((-1)^n)*S(2*n, 22*I) with the imaginary unit I and Chebyshev polynomials S(n, x) with coefficients shown in A049310.

G.f.: (1-x)/(1-486*x+x^2).

a(n) = 486*a(n-1) - a(n-2), n>1; a(0)=1, a(1)=485. - Philippe Deléham, Nov 18 2008

EXAMPLE

(x,y) = (11*1=11;1), (5357=11*487;485), (2603491=11*236681;235709), ... give the positive integer solutions to x^2 - 122*y^2 =-1.

MATHEMATICA

LinearRecurrence[{486, -1}, {1, 485}, 20] (* Ray Chandler, Aug 12 2015 *)

PROG

(PARI) my(x='x+O('x^20)); Vec((1-x)/(1-486*x+x^2)) \\ G. C. Greubel, Aug 01 2019

(MAGMA) I:=[1, 485]; [n le 2 select I[n] else 486*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019

(Sage) ((1-x)/(1-486*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019

(GAP) a:=[1, 485];; for n in [3..20] do a[n]:=486*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019

CROSSREFS

Cf. A097765 for S(n, 486).

Row 11 of array A188647.

Sequence in context: A158326 A031722 A156774 * A031520 A235525 A249227

Adjacent sequences:  A097764 A097765 A097766 * A097768 A097769 A097770

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 09:33 EST 2019. Contains 329843 sequences. (Running on oeis4.)