login
A156774
a(n) = 6561*n^2 - 3564*n + 485.
3
485, 3482, 19601, 48842, 91205, 146690, 215297, 297026, 391877, 499850, 620945, 755162, 902501, 1062962, 1236545, 1423250, 1623077, 1836026, 2062097, 2301290, 2553605, 2819042, 3097601, 3389282, 3694085, 4012010, 4343057, 4687226
OFFSET
0,1
COMMENTS
The identity (6561*n^2 - 3564*n + 485)^2 - (81*n^2 - 44*n + 6)*(729*n - 198)^2 = 1 can be written as a(n)^2 - A156676(n)*A156772(n)^2 = 1 for n>0.
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (485 + 2027*x + 10610*x^2)/(1-x)^3.
E.g.f.: (485 + 2997*x + 6561*x^2)*exp(x). - G. C. Greubel, Jun 21 2021
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {485, 3482, 19601}, 40]
Table[6561n^2-3564n+485, {n, 0, 30}] (* Harvey P. Dale, Dec 09 2020 *)
PROG
(Magma) I:=[485, 3482, 19601]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n)= 6561*n^2-3564*n+485 \\ Charles R Greathouse IV, Dec 23 2011
(Sage) [485 -3564*n +6561*n^2 for n in (0..40)] # G. C. Greubel, Jun 21 2021
CROSSREFS
Sequence in context: A160090 A158326 A031722 * A031632 A097767 A031520
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 15 2009
EXTENSIONS
Edited by Charles R Greathouse IV, Jul 25 2010
STATUS
approved