OFFSET
0,2
COMMENTS
LINKS
FORMULA
a(n) = 2*289*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0.
a(n) = S(n, 2*289)= U(n, 289), Chebyshev's polynomials of the second kind. See A049310.
G.f.: 1/(1-2*289*x+x^2).
a(n)= sum((-1)^k*binomial(n-k, k)*578^(n-2*k), k=0..floor(n/2)), n>=0.
a(n) = ((289+24*sqrt(145))^(n+1) - (289-24*sqrt(145))^(n+1))/(48*sqrt(145)), n>=0.
MATHEMATICA
LinearRecurrence[{578, -1}, {1, 578}, 12] (* Ray Chandler, Aug 12 2015 *)
PROG
(PARI) a(n) = polchebyshev(n, 2, 289); \\ Michel Marcus, Jun 20 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2004
STATUS
approved