login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097765 Chebyshev U(n,x) polynomial evaluated at x=243=2*11^2+1. 2
1, 486, 236195, 114790284, 55787841829, 27112776338610, 13176753512722631, 6403875094406860056, 3112270119128221264585, 1512556874021221127728254, 735099528504194339854666859, 357256858296164427948240365220 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Used to form integer solutions of Pell equation a^2 - 122*b^2 =-1. See A097766 with A097767.

LINKS

Table of n, a(n) for n=0..11.

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (486, -1).

FORMULA

a(n) = 2*243*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0.

a(n) = S(n, 2*243)= U(n, 243), Chebyshev's polynomials of the second kind. See A049310.

G.f.: 1/(1-486*x+x^2).

a(n)= sum((-1)^k*binomial(n-k, k)*486^(n-2*k), k=0..floor(n/2)), n>=0.

a(n) = ((243+22*sqrt(122))^(n+1) - (243-22*sqrt(122))^(n+1))/(44*sqrt(122)), n>=0.

MATHEMATICA

LinearRecurrence[{486, -1}, {1, 486}, 12] (* Ray Chandler, Aug 12 2015 *)

CROSSREFS

Sequence in context: A206146 A128969 A223412 * A179428 A252076 A178813

Adjacent sequences:  A097762 A097763 A097764 * A097766 A097767 A097768

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 13:07 EST 2016. Contains 278875 sequences.