login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097765 Chebyshev U(n,x) polynomial evaluated at x=243=2*11^2+1. 2
1, 486, 236195, 114790284, 55787841829, 27112776338610, 13176753512722631, 6403875094406860056, 3112270119128221264585, 1512556874021221127728254, 735099528504194339854666859, 357256858296164427948240365220 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Used to form integer solutions of Pell equation a^2 - 122*b^2 =-1. See A097766 with A097767.

LINKS

Table of n, a(n) for n=0..11.

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

FORMULA

a(n) = 2*243*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0.

a(n) = S(n, 2*243)= U(n, 243), Chebyshev's polynomials of the second kind. See A049310.

G.f.: 1/(1-486*x+x^2).

a(n)= sum((-1)^k*binomial(n-k, k)*486^(n-2*k), k=0..floor(n/2)), n>=0.

a(n) = ((243+22*sqrt(122))^(n+1) - (243-22*sqrt(122))^(n+1))/(44*sqrt(122)), n>=0.

CROSSREFS

Sequence in context: A206146 A128969 A223412 * A179428 A252076 A178813

Adjacent sequences:  A097762 A097763 A097764 * A097766 A097767 A097768

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 02:47 EST 2014. Contains 252175 sequences.