The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006051 Square hex numbers. (Formerly M5409) 6
 1, 169, 32761, 6355441, 1232922769, 239180661721, 46399815451081, 9001325016847969, 1746210653453054881, 338755865444875798921, 65716891685652451935769, 12748738231151130799740241, 2473189499951633722697670961, 479786014252385791072548426169 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Numbers n of the form n = y^2 = 3*x^2 - 3*x + 1. REFERENCES M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 19. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS G. C. Greubel, Table of n, a(n) for n = 1..435 M. Gardner & N. J. A. Sloane, Correspondence, 1973-74 Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. Sociedad Magic Penny Patagonia, Leonardo en Patagonia Eric Weisstein's World of Mathematics, Hex Number. Index entries for linear recurrences with constant coefficients, signature (195,-195,1). FORMULA a(n) = A001570(n)^2. a(1 - n) = a(n). G.f.: x * (1 - 26*x + x^2) / ((1 - x) * (1 - 194*x + x^2)). - Simon Plouffe in his 1992 dissertation a(n) = 194*a(n-1) - a(n-2) - 24, a(1)=1, a(2)=169. - James A. Sellers, Jul 04 2000 a(n) = (1/8) + (7/16)*[97-56*sqrt(3)]^n + (7/16)*[97+56*sqrt(3)]^n - (1/4)*[97-56*sqrt(3)]^n*sqrt(3) +(1/4)*sqrt(3)*[97+56*sqrt(3)]^n, with n>=0. - Paolo P. Lava, Sep 26 2008 a(n+1) = A003215(A001921(n)). - Joerg Arndt, Jan 02 2017 EXAMPLE x + 169*x^2 + 32761*x^3 + 6355441*x^4 + 1232922769*x^5 + ... MATHEMATICA Rest@ CoefficientList[Series[x (1 - 26 x + x^2)/((1 - x) (1 - 194 x + x^2)), {x, 0, 14}], x] (* Michael De Vlieger, Jan 02 2017 *) LinearRecurrence[{195, -195, 1}, {1, 169, 32761}, 20] (* Harvey P. Dale, Nov 03 2017 *) PROG (PARI) {a(n) = sqr( real( (2 + quadgen( 12)) ^ (2*n - 1)) / 2)} /* Michael Somos, Feb 15 2011 */ (MAGMA) [Round((1/8) + (7/16)*(97-56*Sqrt(3))^n + (7/16)*(97+ 56*Sqrt(3) )^n - (1/4)*(97-56*Sqrt(3))^n*Sqrt(3) +(1/4)*Sqrt(3)*(97+56*Sqrt(3))^n): n in [0..50]]; // G. C. Greubel, Nov 04 2017 CROSSREFS Cf. A003500. Intersection of A000290 and A003215. Values of x are given by A001922, values of y by A001570. Sequence in context: A051477 A227692 A260862 * A069742 A069743 A210087 Adjacent sequences:  A006048 A006049 A006050 * A006052 A006053 A006054 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 10:38 EDT 2020. Contains 336323 sequences. (Running on oeis4.)