login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006051
Square hex numbers.
(Formerly M5409)
6
1, 169, 32761, 6355441, 1232922769, 239180661721, 46399815451081, 9001325016847969, 1746210653453054881, 338755865444875798921, 65716891685652451935769, 12748738231151130799740241, 2473189499951633722697670961, 479786014252385791072548426169
OFFSET
1,2
COMMENTS
Numbers n of the form n = y^2 = 3*x^2 - 3*x + 1.
REFERENCES
M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 19.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Gardner & N. J. A. Sloane, Correspondence, 1973-74
Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Sociedad Magic Penny Patagonia, Leonardo en Patagonia
Eric Weisstein's World of Mathematics, Hex Number.
FORMULA
a(n) = A001570(n)^2.
a(1 - n) = a(n).
G.f.: x * (1 - 26*x + x^2) / ((1 - x) * (1 - 194*x + x^2)). - Simon Plouffe in his 1992 dissertation
a(n) = 194*a(n-1) - a(n-2) - 24, a(1)=1, a(2)=169. - James A. Sellers, Jul 04 2000
a(n+1) = A003215(A001921(n)). - Joerg Arndt, Jan 02 2017
a(n) = (1/8)*(1 + 7*(ChebyshevU(n-1, 97) - ChebyshevU(n-2, 97))). - G. C. Greubel, Oct 07 2022
EXAMPLE
G.f. = x + 169*x^2 + 32761*x^3 + 6355441*x^4 + 1232922769*x^5 + ...
MATHEMATICA
Rest@ CoefficientList[Series[x(1-26x+x^2)/((1-x)(1-194x+x^2)), {x, 0, 20}], x] (* Michael De Vlieger, Jan 02 2017 *)
LinearRecurrence[{195, -195, 1}, {1, 169, 32761}, 20] (* Harvey P. Dale, Nov 03 2017 *)
PROG
(PARI) {a(n) = sqr( real( (2 + quadgen( 12)) ^ (2*n - 1)) / 2)} /* Michael Somos, Feb 15 2011 */
(Magma) [(7*Evaluate(ChebyshevSecond(n), 97) - 7*Evaluate(ChebyshevU(n-1), 97) + 1)/8: n in [1..30]]; // G. C. Greubel, Nov 04 2017; Oct 07 2022
(SageMath)
def A006051(n): return (7*chebyshev_U(n-1, 97) - 7*chebyshev_U(n-2, 97) + 1)/8
[A006051(n) for n in range(1, 31)] # G. C. Greubel, Oct 07 2022
CROSSREFS
Cf. A003500.
Intersection of A000290 and A003215.
Values of x are given by A001922, values of y by A001570.
Sequence in context: A051477 A227692 A260862 * A069742 A069743 A210087
KEYWORD
nonn,easy
STATUS
approved