The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003500 a(n) = 4*a(n-1) - a(n-2) with a(0) = 2, a(1) = 4. (Formerly M1278) 49
 2, 4, 14, 52, 194, 724, 2702, 10084, 37634, 140452, 524174, 1956244, 7300802, 27246964, 101687054, 379501252, 1416317954, 5285770564, 19726764302, 73621286644, 274758382274, 1025412242452, 3826890587534, 14282150107684, 53301709843202, 198924689265124 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n) gives values of x satisfying x^2 - 3*y^2 = 4; corresponding y values are given by 2*A001353(n). If M is any given term of the sequence, then the next one is 2*M + sqrt(3*M^2 - 12). - Lekraj Beedassy, Feb 18 2002 For n > 0, the three numbers a(n) - 1, a(n), and a(n) + 1 form a Fleenor-Heronian triangle, i.e., a Heronian triangle with consecutive sides, whose area A(n) may be obtained from the relation [4*A(n)]^2 = 3([a(2n)]^2 - 4); or A(n) = 3*A001353(2*n)/2 and whose semiperimeter is 3*a[n]/2. The sequence is symmetrical about a, i.e., a[-n] = a[n]. For n > 0, a(n) + 2 is the number of dimer tilings of a 2*n X 2 Klein bottle (cf. A103999). Tsumura shows that, for prime p, a(p) is composite (contrary to a conjecture of Juricevic). - Charles R Greathouse IV, Apr 13 2010 Except for the first term, positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 12 = 0. - Colin Barker, Feb 04 2014 Except for the first term, positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 192 = 0. - Colin Barker, Feb 16 2014 A268281(n) - 1 is a member of this sequence iff A268281(n) is prime. - Frank M Jackson, Feb 27 2016 a(n) gives values of x satisfying 3*x^2 - 4*y^2 = 12; corresponding y values are given by A005320. - Sture Sjöstedt, Dec 19 2017 Middle side lengths of almost-equilateral Heronian triangles. - Wesley Ivan Hurt, May 20 2020 For all elements k of the sequence, 3*(k-2)*(k+2) is a square. - Davide Rotondo, Oct 25 2020 REFERENCES B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 82. J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p.91. Michael P. Cohen, Generating Heronian Triangles With Consecutive Integer Sides. Journal of Recreational Mathematics, vol. 30 no. 2 1999-2000 p. 123. L. E. Dickson, History of The Theory of Numbers, Vol. 2 pp. 197;198;200;201. Chelsea NY. Charles R. Fleenor, Heronian Triangles with Consecutive Integer Sides, Journal of Recreational Mathematics, Volume 28, no. 2 (1996-7) 113-115. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. V. D. To, "Finding All Fleenor-Heronian Triangles", Journal of Recreational Mathematics vol. 32 no.4 2003-4 pp. 298-301 Baywood NY. LINKS T. D. Noe, Table of n, a(n) for n=0..200 R. A. Beauregard and E. R. Suryanarayan, The Brahmagupta Triangles, The College Mathematics Journal 29(1) 13-7 1998 MAA. Hacène Belbachir, Soumeya Merwa Tebtoub and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5. Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv preprint arXiv:1505.06339 [math.NT], 2015. K. S. Brown's Mathpages, Some Properties of the Lucas Sequence(2, 4, 14, 52, 194, ...) H. W. Gould, A triangle with integral sides and area, Fib. Quart., 11 (1973), 27-39. Tanya Khovanova, Recursive Sequences E. Keith Lloyd, The Standard Deviation of 1, 2, ..., n: Pell's Equation and Rational Triangles, Math. Gaz. vol 81 (1997), 231-243. S. Northshield, An Analogue of Stern's Sequence for Z[sqrt(2)], Journal of Integer Sequences, 18 (2015), #15.11.6. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211. Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211. [Annotated scanned copy] Yu Tsumura, On compositeness of special types of integers, arXiv:1004.1244 [math.NT], 2010. Eric Weisstein's World of Mathematics, Heronian Triangle Wikipedia, Heronian triangle A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 840-855. Index entries for linear recurrences with constant coefficients, signature (4,-1). FORMULA a(n) = ( 2 + sqrt(3) )^n + ( 2 - sqrt(3) )^n. a(n) = 2*A001075(n). G.f.: 2*(1 - 2*x)/(1 - 4*x + x^2). Simon Plouffe in his 1992 dissertation. a(n) = A001835(n) + A001835(n+1). a(n) = trace of n-th power of the 2 X 2 matrix [1 2 / 1 3]. - Gary W. Adamson, Jun 30 2003 [corrected by Joerg Arndt, Jun 18 2020] From the addition formula, a(n+m) = a(n)*a(m) - a(m-n), it is easy to derive multiplication formulas, such as: a(2*n) = (a(n))^2 - 2, a(3*n) = (a(n))^3 - 3*(a(n)), a(4*n) = (a(n))^4 - 4*(a(n))^2 + 2, a(5*n) = (a(n))^5 - 5*(a(n))^3 + 5*(a(n)), a(6*n) = (a(n))^6 - 6*(a(n))^4 + 9*(a(n))^2 - 2, etc. The absolute values of the coefficients in the expansions are given by the triangle A034807. - John Blythe Dobson, Nov 04 2007 a(n) = 2*A001353(n+1) - 4*A001353(n). - R. J. Mathar, Nov 16 2007 From Peter Bala, Jan 06 2013: (Start) Let F(x) = Product_{n=0..infinity} (1 + x^(4*n + 1))/(1 + x^(4*n + 3)). Let alpha = 2 - sqrt(3). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.24561 99455 06551 88869 ... = 2 + 1/(4 + 1/(14 + 1/(52 + ...))). Cf. A174500. Also F(-alpha) = 0.74544 81786 39692 68884 ... has the continued fraction representation 1 - 1/(4 - 1/(14 - 1/(52 - ...))) and the simple continued fraction expansion 1/(1 + 1/((4 - 2) + 1/(1 + 1/((14 - 2) + 1/(1 + 1/((52 - 2) + 1/(1 + ...))))))). F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((4^2 - 4) + 1/(1 + 1/((14^2 - 4) + 1/(1 + 1/((52^2 - 4) + 1/(1 + ...))))))). (End) a(2^n) = A003010(n). - John Blythe Dobson, Mar 10 2014 a(n) = [x^n] ( (1 + 4*x + sqrt(1 + 8*x + 12*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015 E.g.f.: 2*exp(2*x)*cosh(sqrt(3)*x). - Ilya Gutkovskiy, Apr 27 2016 a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n*(n - k - 1)!/(k!*(n - 2*k)!)*4^(n - 2*k) for n >= 1. - Peter Luschny, May 10 2016 From Peter Bala, Oct 15 2019: (Start) a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; -1, 4]. Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution). 2*Sum_{n >= 1} 1/( a(n) - 6/a(n) ) = 1. 6*Sum_{n >= 1} (-1)^(n+1)/( a(n) + 2/a(n) ) = 1. 8*Sum_{n >= 1} 1/( a(n) + 24/(a(n) - 12/(a(n))) ) = 1. 8*Sum_{n >= 1} (-1)^(n+1)/( a(n) + 8/(a(n) + 4/(a(n))) ) = 1. Series acceleration formulas for sums of reciprocals: Sum_{n >= 1} 1/a(n) = 1/2 - 6*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 6)), Sum_{n >= 1} 1/a(n) = 1/8 + 24*Sum_{n >= 1} 1/(a(n)*(a(n)^2 + 12)), Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/6 + 2*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 2)) and Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/8 + 8*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 12)). Sum_{n >= 1} 1/a(n) = ( theta_3(2-sqrt(3))^2 - 1 )/4 = 0.34770 07561 66992 06261 .... See Borwein and Borwein, Proposition 3.5 (i), p.91. Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - theta_3(sqrt(3)-2)^2 )/4. Cf. A003499 and A153415. (End) a(n) = tan(Pi/12)^n + tan(5*Pi/12)^n. - Greg Dresden, Oct 01 2020 From Wolfdieter Lang, Sep 06 2021: (Start) a(n) = S(n, 4) - S(n-2, 4) = 2*T(n, 2), for n >= 0, with S and T Chebyshev polynomials, with S(-1, x) = 0 and S(-2, x) = -1. S(n, 4) = A001353(n+1), for n >= -1, and T(n, 2) = A001075(n). a(2*k) = A067902(k), a(2*k+1) = 4*A001570(k+1), for k >= 0. (End) a(n) = sqrt(2 + 2*A011943(n+1)) = sqrt(2 + 2*A102344(n+1)), n>0. - Ralf Steiner, Sep 23 2021 MAPLE A003500 := proc(n) option remember; if n <= 1 then 2*n+2 else 4*procname(n-1)-procname(n-2); fi; end proc; MATHEMATICA a=2; a=4; a[n_]:= a[n]= 4a[n-1] -a[n-2]; Table[a[n], {n, 0, 23}] LinearRecurrence[{4, -1}, {2, 4}, 30] (* Harvey P. Dale, Aug 20 2011 *) Table[Round@LucasL[2n, Sqrt], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *) PROG (Sage) [lucas_number2(n, 4, 1) for n in range(0, 24)] # Zerinvary Lajos, May 14 2009 (Haskell) a003500 n = a003500_list !! n a003500_list = 2 : 4 : zipWith (-)    (map (* 4) \$ tail a003500_list) a003500_list -- Reinhard Zumkeller, Dec 17 2011 (PARI) x='x+O('x^99); Vec(-2*(-1+2*x)/(1-4*x+x^2)) \\ Altug Alkan, Apr 04 2016 (Magma) I:=[2, 4]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2018 CROSSREFS Cf. A001075, A001353, A001835. Cf. A011945 (areas), A334277 (perimeters). Cf. this sequence (middle side lengths), A016064 (smallest side lengths), A335025 (largest side lengths). Cf. A001570, A002530, A005320, A006051, A048788, A174500, A268281. Cf. A011943, A102344. Sequence in context: A046650 A327235 A055727 * A316363 A295760 A129876 Adjacent sequences:  A003497 A003498 A003499 * A003501 A003502 A003503 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS More terms from James A. Sellers, May 03 2000 Additional comments from Lekraj Beedassy, Feb 14 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 6 03:55 EDT 2022. Contains 357261 sequences. (Running on oeis4.)