This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A160155 Decimal expansion of the one real root of x^5-x-1. 9
 1, 1, 6, 7, 3, 0, 3, 9, 7, 8, 2, 6, 1, 4, 1, 8, 6, 8, 4, 2, 5, 6, 0, 4, 5, 8, 9, 9, 8, 5, 4, 8, 4, 2, 1, 8, 0, 7, 2, 0, 5, 6, 0, 3, 7, 1, 5, 2, 5, 4, 8, 9, 0, 3, 9, 1, 4, 0, 0, 8, 2, 4, 4, 9, 2, 7, 5, 6, 5, 1, 9, 0, 3, 4, 2, 9, 5, 2, 7, 0, 5, 3, 1, 8, 0, 6, 8, 5, 2, 0, 5, 0, 4, 9, 7, 2, 8, 6, 7, 2, 8, 9, 5, 3, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Harry J. Smith, Table of n, a(n) for n = 1..20000 David W. Boys, The maximal modulus of an algebraic integer, Math. Comp. 45 (1985) 243-249, table page S18. Qiang Wu, The smallest Perron numbers, Math. Comp. 79 (2010) 2387-2394 FORMULA Equals (1 + (1 + (1 + (1 + (1 + ...)^(1/5))^(1/5))^(1/5))^(1/5))^(1/5). - Ilya Gutkovskiy, Dec 15 2017 EXAMPLE 1.16730397826141868425604589985484218072056037152548903914008244927565... MATHEMATICA RealDigits[Root[x^5-x-1, x, 1], 10, 105] // First (* Jean-François Alcover, Jul 09 2015 *) PROG (PARI) { default(realprecision, 20080); x=NULL; p=x^5 - x - 1; rs=polroots(p); r=real(rs[1]); for (n=1, 20000, d=floor(r); r=(r-d)*10; write("b160155.txt", n, " ", d)); } (PARI) polrootsreal(x^5-x-1)[1] \\ Charles R Greathouse IV, Apr 14 2014 CROSSREFS Cf. A001622, A039922 (continued fraction), A060006, A060007. Sequence in context: A267251 A259526 A108664 * A277135 A153628 A154972 Adjacent sequences:  A160152 A160153 A160154 * A160156 A160157 A160158 KEYWORD nonn,easy,cons AUTHOR Harry J. Smith, May 03 2009 EXTENSIONS Fixed my PARI program, had -n Harry J. Smith, May 19 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 22 04:11 EDT 2018. Contains 301047 sequences. (Running on oeis4.)