login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056105 First spoke of a hexagonal spiral. 40
1, 2, 9, 22, 41, 66, 97, 134, 177, 226, 281, 342, 409, 482, 561, 646, 737, 834, 937, 1046, 1161, 1282, 1409, 1542, 1681, 1826, 1977, 2134, 2297, 2466, 2641, 2822, 3009, 3202, 3401, 3606, 3817, 4034, 4257, 4486, 4721, 4962, 5209, 5462, 5721, 5986, 6257 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also the number of (not necessarily maximum) cliques in the n X n grid graph. - Eric W. Weisstein, Nov 29 2017

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

H. Bottomley, Illustration of initial terms

G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2

Eric Weisstein's World of Mathematics, Clique

Eric Weisstein's World of Mathematics, Grid Graph

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 3*n^2 - 2*n + 1.

a(n) = a(n-1) + 6*n - 5.

a(n) = 2*a(n-1) - a(n-2) + 6.

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

a(n) = A056106(n) - n = A056107(n) - 2*n.

a(n) = A056108(n) - 3*n = A056109(n) - 4*n = A003215(n) - 5*n.

A008810(3*n-1) = A056109(-n) = a(n). - Michael Somos, Aug 03 2006.

G.f.: (1-x+6*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012

From Robert G. Wilson v, Jul 05 2014: (Start)

Each of the 6 primary spokes or rays has a generating formula as stated here:

1st:  90 degrees A056105 3n^2 - 2n + 1

2nd:  30 degrees A056106 3n^2 -  n + 1

3rd: 330 degrees A056107 3n^2      + 1

4th: 270 degrees A056108 3n^2 +  n + 1

5th: 210 degrees A056109 3n^2 + 2n + 1

6th: 150 degrees A003215 3n^2 + 3n + 1

Each of the 6 secondary spokes or rays has a generating formula as stated here:

1st:  60 degrees 12n^2 - 27n + 16

2nd: 360 degrees 12n^2 - 25n + 14

3rd: 300 degrees 12n^2 - 23n + 12

4th: 240 degrees 12n^2 - 21n + 10

5th: 180 degrees 12n^2 - 19n +  8

6th: 120 degrees 12n^2 - 17n +  6 = A033577(n+1)

(End)

a(n) = 1 + A000567(n). - Omar E. Pol, Apr 26 2017

a(n) = A000290(n-1) + 2*A000290(n), n >= 1. - J. M. Bergot, Mar 03 2018

E.g.f.: (1 + x + 3*x^2)*exp(x). - G. C. Greubel, Dec 02 2018

EXAMPLE

From Robert G. Wilson v, Jul 05 2014: (Start)

.

............363.362.361.360.359.358.357.356.355.354

.

..........301.300.299.298.297.296.295.294.293.292.291

.

........302.244.243.242.241.240.239.238.237.236.235.290

.

......303.245.193.192.191.190.189.188.187.186.185.234.289

.

....304.246.194.148.147.146.145.144.143.142.141.184.233.288

.

..305.247.195.149.109.108.107.106.105.104.103.140.183.232.287

.

306.248.196.150.110..76..75..74..73..72..71.102.139.182.231.286

.

..249.197.151.111..77..49..48..47..46..45..70.101.138.181.230.285

.

250.198.152.112..78..50..28..27..26..25..44..69.100.137.180.229.

.

..199.153.113..79..51..29..13..12..11..24..43..68..99.136.179.228

.

200.154.114..80..52..30..14...4...3..10..23..42..67..98.135.178.

.

..155.115..81..53..31..15...5...1...2...9..22..41..66..97.134.177

.

202.156.116..82..54..32..16...6...7...8..21..40..65..96.133.176.

.

..203.157.117..83..55..33..17..18..19..20..39..64..95.132.175.224

.

256.204.158.118..84..56..34..35..36..37..38..63..94.131.174.223.

.

..257.205.159.119..85..57..58..59..60..61..62..93.130.173.222.277

.

....258.206.160.120..86..87..88..89..90..91..92.129.172.221.276

.

......259.207.161.121.122.123.124.125.126.127.128.171.220.275

.

........260.208.162.163.164.165.166.167.168.169.170.219.274

.

..........261.209.210.211.212.213.214.215.216.217.218.273

.

............262.263.264.265.266.267.268.269.270.271.272

.

..............322.323.324.325.326.327.328.329.330.331

.

(End)

MAPLE

A056105:=n->3*n^2 - 2*n + 1: seq(A056105(n), n=0..50); # Wesley Ivan Hurt, Jul 06 2014

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {1, 2, 9}, 50] (* Harvey P. Dale, Nov 02 2011 *)

Table[3 n^2 - 2 n + 1, {n, 0, 20}] (* Eric W. Weisstein, Nov 29 2017 *)

CoefficientList[Series[(-1 + x - 6 x^2)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)

PROG

(PARI) a(n)=3*n^2-2*n+1 /* Michael Somos, Aug 03 2006 */

(MAGMA) [3*n^2-2*n+1: n in [0..50]]; // Wesley Ivan Hurt, Jul 06 2014

(Sage) [3*n^2-2*n+1 for n in range(50)] # G. C. Greubel, Dec 02 2018

(GAP) List([0..50], n -> 3*n^2-2*n+1); # G. C. Greubel, Dec 02 2018

CROSSREFS

Cf. A113519 (semiprime terms).

Other spokes: A003215, A056106, A056107, A056108, A056109.

Other spirals: A054552.

Sequence in context: A259702 A284923 A235707 * A323891 A212069 A106058

Adjacent sequences:  A056102 A056103 A056104 * A056106 A056107 A056108

KEYWORD

easy,nonn

AUTHOR

Henry Bottomley, Jun 09 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 02:10 EDT 2021. Contains 343143 sequences. (Running on oeis4.)