login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212069 Number of (w,x,y,z) with all terms in {1,...,n} and 3*w = x+y+z. 5
0, 1, 2, 9, 22, 41, 72, 115, 170, 243, 334, 443, 576, 733, 914, 1125, 1366, 1637, 1944, 2287, 2666, 3087, 3550, 4055, 4608, 5209, 5858, 6561, 7318, 8129, 9000, 9931, 10922, 11979, 13102, 14291, 15552, 16885, 18290, 19773, 21334, 22973 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

w is the average of {x,y,z}, as well as {w,x,y,z}.

For a guide to related sequences, see A211795.

a(n) is also the number of (w,x,y,z) with all terms in {0,1,...,n-1} and 3*w = x+y+z. - Clark Kimberling, May 16 2012

LINKS

Table of n, a(n) for n=0..41.

Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-3,3,-1).

FORMULA

a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).

From R. J. Mathar, Jun 25 2012: (Start)

G.f. x*(1 - x + 6*x^2 - x^3 + x^4)/((1 + x + x^2)*(1 - x)^4).

3*a(n) = n^3 + 2*A049347(n-1). (End)

MATHEMATICA

t = Compile[{{n, _Integer}}, Module[{s = 0},

(Do[If[3 w == x + y + z, s = s + 1],

{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];

Map[t[#] &, Range[0, 50]] (* A212087 *)

FindLinearRecurrence[%]

(* Peter J. C. Moses, Apr 13 2012 *)

LinearRecurrence[{3, -3, 2, -3, 3, -1}, {0, 1, 2, 9, 22, 41}, 42] (* Ray Chandler, Aug 02 2015 *)

CROSSREFS

Cf. A211795.

Sequence in context: A235707 A056105 A323891 * A106058 A086718 A023625

Adjacent sequences:  A212066 A212067 A212068 * A212070 A212071 A212072

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, May 01 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 1 03:09 EST 2021. Contains 341732 sequences. (Running on oeis4.)