login
A212069
Number of (w,x,y,z) with all terms in {1,...,n} and 3*w = x+y+z.
5
0, 1, 2, 9, 22, 41, 72, 115, 170, 243, 334, 443, 576, 733, 914, 1125, 1366, 1637, 1944, 2287, 2666, 3087, 3550, 4055, 4608, 5209, 5858, 6561, 7318, 8129, 9000, 9931, 10922, 11979, 13102, 14291, 15552, 16885, 18290, 19773, 21334, 22973
OFFSET
0,3
COMMENTS
w is the average of {x,y,z}, as well as {w,x,y,z}.
For a guide to related sequences, see A211795.
a(n) is also the number of (w,x,y,z) with all terms in {0,1,...,n-1} and 3*w = x+y+z. - Clark Kimberling, May 16 2012
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).
From R. J. Mathar, Jun 25 2012: (Start)
G.f. x*(1 - x + 6*x^2 - x^3 + x^4)/((1 + x + x^2)*(1 - x)^4).
3*a(n) = n^3 + 2*A049347(n-1). (End)
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[3 w == x + y + z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 50]] (* A212087 *)
FindLinearRecurrence[%]
(* Peter J. C. Moses, Apr 13 2012 *)
LinearRecurrence[{3, -3, 2, -3, 3, -1}, {0, 1, 2, 9, 22, 41}, 42] (* Ray Chandler, Aug 02 2015 *)
CROSSREFS
Cf. A211795.
Sequence in context: A235707 A056105 A323891 * A106058 A086718 A023625
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 01 2012
STATUS
approved