login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212069
Number of (w,x,y,z) with all terms in {1,...,n} and 3*w = x+y+z.
5
0, 1, 2, 9, 22, 41, 72, 115, 170, 243, 334, 443, 576, 733, 914, 1125, 1366, 1637, 1944, 2287, 2666, 3087, 3550, 4055, 4608, 5209, 5858, 6561, 7318, 8129, 9000, 9931, 10922, 11979, 13102, 14291, 15552, 16885, 18290, 19773, 21334, 22973
OFFSET
0,3
COMMENTS
w is the average of {x,y,z}, as well as {w,x,y,z}.
For a guide to related sequences, see A211795.
a(n) is also the number of (w,x,y,z) with all terms in {0,1,...,n-1} and 3*w = x+y+z. - Clark Kimberling, May 16 2012
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).
From R. J. Mathar, Jun 25 2012: (Start)
G.f. x*(1 - x + 6*x^2 - x^3 + x^4)/((1 + x + x^2)*(1 - x)^4).
3*a(n) = n^3 + 2*A049347(n-1). (End)
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[3 w == x + y + z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 50]] (* A212087 *)
FindLinearRecurrence[%]
(* Peter J. C. Moses, Apr 13 2012 *)
LinearRecurrence[{3, -3, 2, -3, 3, -1}, {0, 1, 2, 9, 22, 41}, 42] (* Ray Chandler, Aug 02 2015 *)
CROSSREFS
Cf. A211795.
Sequence in context: A235707 A056105 A323891 * A106058 A086718 A023625
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 01 2012
STATUS
approved