login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212068 Number of (w,x,y,z) with all terms in {1,...,n} and 2w=x+y+z. 3
0, 0, 3, 10, 25, 49, 86, 137, 206, 294, 405, 540, 703, 895, 1120, 1379, 1676, 2012, 2391, 2814, 3285, 3805, 4378, 5005, 5690, 6434, 7241, 8112, 9051, 10059, 11140, 12295, 13528, 14840, 16235, 17714, 19281, 20937, 22686, 24529, 26470, 28510, 30653, 32900 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For a guide to related sequences, see A211795.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).

FORMULA

a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5).

From Colin Barker, Dec 02 2017: (Start)

G.f.: x^2*(3 + x + x^2) / ((1 - x)^4*(1 + x)).

a(n) = n*(10*n^2 - 3*n + 2)/24 for n even.

a(n) = (n - 1)*(10*n^2 + 7*n + 9)/24 for n odd.

(End)

MATHEMATICA

t = Compile[{{n, _Integer}}, Module[{s = 0},

(Do[If[2 w == x + y + z, s = s + 1],

{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];

Map[t[#] &, Range[0, 50]] (* A212068 *)

FindLinearRecurrence[%]

(* Peter J. C. Moses, Apr 13 2012 *)

LinearRecurrence[{3, -2, -2, 3, -1}, {0, 0, 3, 10, 25}, 42] (* Ray Chandler, Aug 02 2015 *)

PROG

(PARI) concat(vector(2), Vec(x^2*(3 + x + x^2) / ((1 - x)^4*(1 + x)) + O(x^40))) \\ Colin Barker, Dec 02 2017

CROSSREFS

Cf. A211795.

Sequence in context: A192912 A168062 A176952 * A162607 A267574 A047667

Adjacent sequences:  A212065 A212066 A212067 * A212069 A212070 A212071

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, May 01 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 1 02:43 EST 2021. Contains 341732 sequences. (Running on oeis4.)