login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A056109
Fifth spoke of a hexagonal spiral.
50
1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321, 386, 457, 534, 617, 706, 801, 902, 1009, 1122, 1241, 1366, 1497, 1634, 1777, 1926, 2081, 2242, 2409, 2582, 2761, 2946, 3137, 3334, 3537, 3746, 3961, 4182, 4409, 4642, 4881, 5126, 5377, 5634, 5897, 6166, 6441
OFFSET
0,2
COMMENTS
Squared distance from (0,0,-1) to (n,n,n) in R^3. - James R. Buddenhagen, Jun 15 2013
FORMULA
a(n) = 3n^2+2n+1 = a(n-1)+6n-1 = 2a(n-1)-a(n-2)+6 = 3a(n-1)-3a(n-2)+a(n-3) = A056105(n)+4n = A056106(n)+3n = A056107(n)+2n = A056108(n)+n = A003215(n)-n.
G.f.: (1+3*x+2*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
G.f.: (1 + x) * (1 + 2*x) / (1 - x)^3. - Michael Somos, Feb 04 2012
a(n) = A008810(3*n + 1) = A056105(-n). - Michael Somos, Aug 03 2006
E.g.f.: exp(x)*(1 + 5*x + 3*x^2). - Stefano Spezia, Oct 06 2018
a(n) = A000290(n+1) + 2*A000290(n). - Leo Tavares, May 29 2023
a(n) = A069894(n) - A000290(n+1). - Jarrod G. Sage, Jul 19 2024
MAPLE
seq(coeff(series(n!*(exp(x)*(3*x^2+5*x+1)), x, n+1), x, n), n = 0 .. 50); # Muniru A Asiru, Oct 07 2018
MATHEMATICA
Table[3 n^2 + 2 n + 1, {n, 0, 100}] (* Vincenzo Librandi, Mar 15 2013 *)
LinearRecurrence[{3, -3, 1}, {1, 6, 17}, 60] (* Harvey P. Dale, Mar 28 2019 *)
PROG
(PARI) {a(n) = 3*n^2 + 2*n + 1}; /* Michael Somos, Aug 03 2006 */
(PARI) Vec((1+3*x+2*x^2)/(1-3*x+3*x^2-x^3)+O(x^100)) \\ Stefano Spezia, Oct 17 2018
(Magma) [3*n^2 + 2*n + 1: n in [0..50]]; // Vincenzo Librandi, Mar 15 2013
(GAP) List([0..50], n->3*n^2+2*n+1); # Muniru A Asiru, Oct 07 2018
(Python) for n in range(0, 100): print(int(3*n**2 + 2*n + 1), end=', ') # Stefano Spezia, Oct 16 2018
CROSSREFS
Cf. A008810, A122430 (prime terms).
Other spirals: A054552.
Cf. A000290.
Sequence in context: A301711 A066486 A301719 * A023545 A038633 A083045
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jun 09 2000
STATUS
approved