This site is supported by donations to The OEIS Foundation.


From OeisWiki
Jump to: navigation, search

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with Z.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.


  1. Alexey Zabelkin, Nikita Alexeev, Estimation of the True Evolutionary Distance Under the INFER Model, RECOMB International conference on Comparative Genomics, RECOMB-CG (2018): Comparative Genomics, 72-87. doi:10.1007/978-3-030-00834-5_4 (A001764)
  2. Mike Zabrocki, The Joy of Set. To be presented at FPSAC'01 at Arizona State University in May, 2001.
  3. Efendi Zaenudin, Ezra Bernadus Wijaya, Eskezeia Yihunie Dessie, Mekala Venugopala Reddy, Jeffrey J.P. Tsai, Chien-Hung Huang,Ka-Lok Ng, A Parallel Algorithm to Generate Connected Network Motifs, IAENG Int'l J. of Computer Science (2019) Vol. 46, No. 4. PDF
  4. D. Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function. Topology 40 (2001), no. 5, 945-960.
  5. R. Zahedi, On a Deterministic Property of the Category of k-Almost Primes ..., arXiv preprint arXiv:1408.1888, 2014
  6. Dmitry Zaitsev, k-neighborhood for Cellular Automata, arXiv preprint arXiv:1605.08870, 2016
  7. Dmitry A. Zaitsev, A generalized neighborhood for cellular automata, Theoretical Computer Science, 2016, Volume 666, 1 March 2017, Pages 21–35; doi:10.1016/j.tcs.2016.11.002
  8. Saeed Zakeri, Cyclic Permutations: Degrees and Combinatorial Types, arXiv:1909.03300 [math.DS], 2019. (A002619)
  9. Anthony Zaleski, Explicit expressions for the moments of the size of an (s, s+ 1)-core partition with distinct parts, arXiv preprint arXiv:1608.02262, 2016.
  10. Anthony Zaleski, Explicit expressions for the moments of the size of an (n, dn - 1)-core partition with distinct parts, Integers (2019) Vol. 19, Article #A26. Abstract
  11. Anthony Zaleski, Doron Zeilberger, Explicit (Polynomial!) Expressions for the Expectation, Variance and Higher Moments of the Size of a (2n+ 1, 2n+ 3)-core partition with Distinct Parts, arXiv preprint arXiv:1611.05775, 2016
  12. Anthony Zaleski, Doron Zeilberger, On the Intriguing Problem of Counting (n + 1, n + 2)-Core Partitions into OddParts,
  13. M. P. Zaletel and R. S. K. Mong, Exact Matrix Product States for Quantum Hall Wave Functions, Arxiv preprint arXiv:1208.4862, 2012.
  14. Gorka Zamora-López, Romain Brasselet, Sizing the length of complex networks, arXiv:1810.12825 [physics.soc-ph], 2018. (A060432)
  15. Diyar O. Mustafa Zangana, Ahmet Öteleş, Padovan Numbers by the Permanents of a Certain Complex Pentadiagonal Matrix, J. of Garmian Univ. (2018) Vol. 5, No. 2, 330-338. doi:10.24271/garmian.346 (A000931)
  16. Richard Zanibbi, K Davila, A Kane, F Tompa, Multi-Stage Math Formula Search: Using Appearance-Based Similarity Metrics at Scale, Preprint 2016;
  17. Hans Zantema, Complexity of Automatic Sequences, International Conference on Language and Automata Theory and Applications (LATA 2020): Language and Automata Theory and Applications, 260-271. doi:10.1007/978-3-030-40608-0_18 (A010060, A014577)
  18. Leon Zaporski, Felix Flicker, Superconvergence of Topological Entropy in the Symbolic Dynamics of Substitution Sequences, arXiv:1811.00331 [nlin.CD], 2018. (A000129, A125905)
  19. Catalin Zara, Cardinality of l_1-Segments and Genocchi Numbers, arXiv preprint arXiv:1304.5798, 2013
  20. Yoram Zarai, Michael Margaliot, and Tamir Tuller. A Deterministic Mathematical Model for Bidirectional Excluded Flow with Langmuir Kinetics, arXiv:1609.05676, 2016.
  21. A. A. Zaslavskii, Geometry of paired comparisons, Automation and Remote Control, Volume 68, Number 3 / March, 2007.
  22. Thomas Zaslavsky, A new distribution problem of balls into urns and how to color a graph by different-sized sets (2006), arXiv:math/0609049.
  23. A. V. Zavarnitsine, Finite simple groups with narrow prime spectrum, Sib. El. Math. Rep. 6 (2009) 1-12
  24. Sa’ar Zehavi, Ivo Fagundes David de Oliveira, Not Conway's 99-Graph Problem, research paper, Department of Computer Science, Technion, Sep 15 2017. PDF (A248380)
  25. D. Zeilberger, 1998 Steele Prizes, Notices of the AMS, April 1998.
  26. D. Zeilberger, The Umbral Transfer-Matrix Method. IV. Counting Self-Avoiding Polygons and Walks, Electronic Journal of Combinatorics, Volume 8(1), 2001, article #R28.
  27. Doron Zeilberger, There are More Than 2**(n/17) n-Letter Ternary Square-Free Words (1998), arXiv:math/9809135.
  28. Doron Zeilberger, In How Many Ways Can You Reassemble Several Russian Dolls?, arXiv:0909.3453 [math.CO]
  29. Doron Zeilberger, Opinion 124: A Database is Worth a Thousand Mathematical Articles: An Ode to Neil Sloane's On-line Encyclopedia of Integer Sequences (OEIS),
  30. D. Zeilberger, Automatic Enumeration of Generalized Menage Numbers, arXiv preprint arXiv:1401.1089, 2014
  31. D. Zeilberger, An Explicit Conjectured Determinant Evaluation Whose Proof Would Make Me Happy (and the OEIS richer), arXiv preprint arXiv:1401.1532, 2014.
  32. Doron Zeilberger, Noam Zeilberger, Two Questions about the Fractional Counting of Partitions, arXiv:1810.12701 [math.CO], 2018. (A000041, A000079, A000142)
  33. Noam Zeilberger, Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596, 2015.
  34. Noam Zeilberger, Towards a mathematical science of programming, Preprint 2015;
  35. Noam Zeilberger, Linear lambda terms as invariants of rooted trivalent maps, arXiv preprint arXiv:1512.06751, 2015
  36. Noam Zeilberger, "A Sequent Calculus for a Semi-Associative Law", 2nd International Conference on Formal Structures for Computation and Deduction, LIPIcs, 2017, PDF.
  37. Noam Zeilberger, A sequent calculus for the Tamari order, arXiv:1701.02917, 2017.
  38. Noam Zeilberger, <a href="">A Sequent Calculus for a Semi-Associative Law</a>, arXiv preprint 1803.10030, March 2018 (A revised version of a 2017 conference paper)
  39. Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018. (A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827)
  40. Noam Zeilberger and Alain Giorgetti, A correspondence between rooted planar maps and normal planar lambda terms, arXiv:1408.5028 [cs.LO], 2014.
  41. Noam Zeilberger and Alain Giorgetti, On Rooted Planar Maps and Normal Planar Lambda Terms, preprint, 2015. (A000168, A062980, A220910)
  42. DIE ZEIT, 4 Oktober 2018, No. 41, page 40: Grafik No. 486: Mathematik. Besondere Zahlen. Recherche: Christoph Drösser, Illustration: Maren Amini
  43. J. Zelinsky, "A Partial Proof of a Conjecture and Other Results", J. Integer Sequences, Volume 5, 2002, Article 02.2.8.
  44. Claude Zeller, Robert Cordery, Light scattering as a Poisson process and first passage probability, arXiv:1906.11131 [cond-mat.stat-mech], 2019. (A055151)
  45. Alexsandr Zemlyanukhin, Andrey Bochkarev, Exact Solutions and Numerical Simulation of the Discrete Sawada–Kotera Equation, Symmetry (2020) Vol. 12, No. 1, 131. doi:10.3390/sym12010131
  46. Luke Zeng, Shawn Xin, Avadesian Xu, Thomas Pang, Tim Yang, Maolin Zheng, Seele's New Anti-ASIC Consensus Algorithm with Emphasis on Matrix Computation, arXiv:1905.04565 [cs.CR], 2019. (A003432, A051752)
  47. Hector Zenil, The smallest universal Turing machine implementation contest, retrieved 7 November 2018 HTML. (A141474, A141475)
  48. Hector Zenil, N Kiani, J Tegner, Low Algorithmic Complexity Entropy-deceiving Graphs, arXiv preprint arXiv:1608.05972, 2016.
  49. Gabriel Martín Zeolla, Cubic Power Algorithm Using Polynomials, (2019). PDF (A000096, A000217, A000292, A000578, A002378, A005843, A070770)
  50. Gabriel Martin Zeolla, Formula to get twin prime numbers, (2019). PDF (A001097, A001359, A002822, A006512)
  51. Gabriel Martin Zeolla, Multiples of the Simple composite numbers by Golden Patterns, (2019). PDF (A052548)
  52. Gabriel Martín Zeolla, Square power algorithm using polynomials, (2019). PDF (A051162)
  53. Dainis Zeps, On Grinbergs' differential geometry and finite fields, University of Latvia (2019). doi:10.13140/RG.2.2.28885.27367 (A074243)
  54. Cheng Zhang and Jianpeng Ma, Counting Solutions for the N-queens and Latin Square Problems by Efficient Monte Carlo Simulations (2008); arXiv:0808.4003
  55. Cheng Zhang and Jianpeng Ma, doi:10.1103/PhysRevE.79.016703 Counting solutions for the N-queens and latin-square problems by Monte Carlo simulations, Phys. Rev. E 79 (2009) 016703
  56. D. Zhang, W. Zhai, Mean Values of a Gcd-Sum Function Over Regular Integers Modulo n, J. Int. Seq. 13 (2010), 10.4.7.
  57. D. Zhang, W. Zhai, Mean Values of a Class of Arithmetical Functions, J. Int. Seq. 14 (2011) #11.6.5
  58. D. Zhang, W. Zhai, On an Open Problem of Tóth, J. Int. Seq. 16 (2013) #13.6.5
  59. Hao Zhang and Daniel Gildea, "Enumeration of Factorizable Multi-Dimensional Permutations", J. Integer Sequences, Volume 10, 2007, Article 07.5.8.
  60. Jiemeng Zhang, Zhixiong Wen, Wen Wu, Some Properties of the Fibonacci Sequence on an Infinite Alphabet, Electronic Journal of Combinatorics, 24(2) (2017), #P2.52.
  61. Juling Zhang, Guowu Yang, William N. N. Hung, Tian Liu, Xiaoyu Song, Marek A. Perkowski, A Group Algebraic Approach to NPN Classification of Boolean Functions, Theory of Computing Systems (2018), 1–20. doi:10.1007/s00224-018-9903-0 (A000370)
  62. LiJun Zhang, Bing Li, LeeTang Cheng, Constructions of QC LDPC codes based on integer sequences, Science China Information Sciences, June 2014, Volume 57, Issue 6, pp 1-14.
  63. Lin Zhang, A Likelihood Ratio Test of Independence of Components for High-dimensional Normal Vectors, MS Thesis, Univ. Minnesota, 2013;
  64. Philip B. Zhang, On the Real-rootedness of the Descent Polynomials of (n-2)-Stack Sortable Permutations, arXiv preprint arXiv:1408.4235, 2014
  65. Tianping Zhang and Yuankui Ma, "On Generalized Fibonacci Polynomials and Bernoulli Numbers", J. Integer Sequences, Volume 8, 2005, Article 05.5.3.
  66. X.-M. Zhang and X.-D. Zhang, Trees with given degree sequences that have minimal subtrees, Arxiv preprint arXiv:1209.0273, 2012
  67. X.-M. Zhang, X.-D. Zhang, D. Gray and H. Wang, Trees with the most subtrees--an algorithmic approach, arXiv preprint arXiv:1210.2871, 2012
  68. Yan Zhang, F. Yang, W. Song, Performance Analysis for Cooperative Communication System with QC-LDPC Codes Constructed with Integer Sequences, Discrete Dynamics in Nature and Society, Volume 2015, Article ID 649814, 7 pages; doi:10.1155/2015/649814.
  69. Yan X Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318, 2015
  70. Yifan Zhang, George Grossman, A Combinatorial Proof for the Generating Function of Powers of a Second-Order Recurrence Sequence, Journal of Integer Sequences, Vol. 21 (2018), Article 18.3.3. HTML (A000032, A000045, A000129, A000290, A000578, A000583, A000584, A001014, A001015, A001016, A001017, A001045, A001477, A001582, A007598, A008292, A008454, A030186, A056570, A056571, A056572, A056573, A056574, A056585, A056586, A056587, A079291, A110272, A139818)
  71. Ying Zhang, An elementary proof of uniqueness of Markoff numbers which are prime powers (2006), arXiv:math/0606283.
  72. Zhang, Ying, Congruence and uniqueness of certain Markoff numbers. Acta Arith. 128 (2007), no. 3, 295-301.
  73. Yuanzhao Zhang, Takashi Nishikawa, Adilson E. Motter, Asymmetry-Induced Synchronization in Oscillator Networks, arXiv:1705.07907 [nlin.AO], 2017.
  74. Yue Zhang, Chunfang Zheng, David Sankoff, Distinguishing successive ancient polyploidy levels based on genome-internal syntenic alignment, BMC Bioinformatics (2019) Vol. 20, 635. doi:10.1186/s12859-019-3202-x (A000292)
  75. Zhujun Zhang, A Note on Counting Dependency Trees, arXiv:1708.08789 [math.GM], 2017, Page 3.
  76. Zhujun Zhang, A Note on Counting Binomial Heaps, (2019). PDF (A000120, A001316, A011371, A049606, A067667)
  77. A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
  78. Alina F. Y. Zhao, Bijective proofs for some results on the descent polytope, AUSTRALASIAN JOURNAL OF COMBINATORICS, Volume 65(1) (2016), Pages 45–52.
  79. Jianqiang Zhao, Uniform Approach to Double Shuffle and Duality Relations of Various q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras, arXiv preprint arXiv:1412.8044, 2014
  80. Jianqiang Zhao, Finite Multiple zeta Values and Finite Euler Sums, arXiv preprint arXiv:1507.04917, 2015
  81. Liang Zhao and Fengyao Yan, Note on Total Positivity for a Class of Recursive Matrices, Journal of Integer Sequences, Vol. 19 (2016), Article 16.6.5.
  82. T. Zhao, B. K. Ben Mahmoud, M. A. Toumi et al Some new properties of applied-physics related Boubaker polynomials
  83. Xuxu Zhao, Xu Wang, Haiyuan Yao, Some enumerative properties of a class of Fibonacci-like cubes, arXiv:1905.00573 [math.CO], 2019. (A027907)
  84. Y. Zhao, doi:10.1016/j.jnt.2009.11.005 Constructing MSTD sets using bidirectional ballot sequences, J. Numb. Theory 130 (50 (2010) 1212-1220
  85. Yufei Zhao, Constructing numerical semigroups of a given genus, doi:10.1007/s00233-009-9190-9, Semigroup Forum 80 (2010) 242-254.
  86. Chris Zheng, Jeffrey Zheng, Triangular Numbers and Their Inherent Properties, Variant Construction from Theoretical Foundation to Applications, Springer, Singapore, 51-65. doi:10.1007/978-981-13-2282-2_4 (A007318, A035312, A102639, A194005)
  87. Li-Na Zheng, Rui Liu, and Feng-Zhen Zhao, "On the Log-Concavity of the Hyperfibonacci Numbers and the Hyperlucas Numbers", Journal of Integer Sequences, Vol. 17 (2014), #14.1.4.
  88. S.-n. Zheng and S.-l. Yang, On the-Shifted Central Coefficients of Riordan Matrices, Journal of Applied Mathematics, Volume 2014, Article ID 848374, 8 pages; doi:10.1155/2014/848374
  89. Jian Zhou, On a Mean Field Theory of Topological 2D Gravity, arXiv preprint arXiv:1503.08546, 2015.
  90. Jian Zhou, Hermitian One-Matrix Model and KP Hierarchy, arXiv:1809.07951 [math-ph], 2018. (A035309)
  91. Jian Zhou, Fat and Thin Emergent Geometries of Hermitian One-Matrix Models, arXiv:1810.03883 [math-ph], 2018. (A000168, A000309, A001764, A001791, A002005, A002006, A002007, A002008, A002009, A002010, A002293, A002294, A002295, A002296, A007556, A062744, A062994, A085614, A104978, A230388)
  92. Ping Zhou, Covering rough sets based on neighborhoods: an approach without using neighborhoods, Int. J. Approx. Reas. 52 (2011) 461-472. doi:10.1016/j.ijar.2010.10.005
  93. Shujie Zhou, Li Chen, Tribonacci Numbers and Some Related Interesting Identities, Symmetry (2019) Vol. 11, No. 10, 1195. doi:10.3390/sym11101195 (A000073)
  94. Yajun Zhou, Hilbert Transforms and Sum Rules of Bessel Moments, arXiv:1706.01068 [math.CA}, 2017.
  95. Yajun Zhou, Some algebraic and arithmetic properties of Feynman diagrams, arXiv:1801.05555 [math.NT], 2018. (A262961)
  96. Bao-Xuan Zhu, Analytic approaches to monotonicity and log-behavior of combinatorial sequences, arXiv preprint arXiv:1309.5693, 2013
  97. Bao-Xuan Zhu, Higher order log-monotonicity of combinatorial sequences, arXiv preprint arXiv:1309.6025, 2013
  98. Bao-Xuan Zhu, Linear transformations and strong q-log-concavity for certain combinatorial triangle, arXiv preprint arXiv:1605.00257, 2016
  99. Bao-Xuan Zhu, Stability of iterated polynomials and linear transformations preserving the strong q-log-convexity, arXiv preprint arXiv:1609.01544, 2016.
  100. Bao-Xuan Zhu, q-log-convexity from linear transformations and polynomials with only real zeros, European Journal of Combinatorics 73 (2018), 231-246. doi:10.1016/j.ejc.2018.06.003
  101. Christopher Zhu, Enumerating permutations with singleton double descent sets, The Roxbury Latin School, MIT PRIMES Conference (2019). PDF (A049774, A080635)
  102. Christopher Zhu, Enumerating Permutations and Rim Hooks Characterized by Double Descent Sets, arXiv:1910.12818 [math.CO], 2019. (A000045, A049774, A080635)
  103. Yi Zhu, Evgueni T. Filipov, An efficient numerical approach for simulating contact in origami assemblages, Proc. R. Soc. A (2019) Vol. 475, 20190366. doi:10.1098/rspa.2019.0366 (A000670)
  104. Yan Zhuang, Monoid networks and counting permutations by runs, preprint arXiv:1505.02308 (A008303, A008971, A059427, A186370, A162975, A162976). Second version has new title: Yan Zhuang, Counting permutations by runs, arXiv preprint arXiv:1505.02308v2, 2015
  105. Zhuang, Yan. "A generalized Goulden–Jackson cluster method and lattice path enumeration." Discrete Mathematics 341.2 (2018): 358-379.
  106. Yan Zhuang, Noncommutative Symmetric Functions and Permutation Enumeration, Ph. D. Dissertation, Brandeis University, 2018. partial HTML
  107. F. Zickfeld, Geometric and combinatorial structures on graphs, PhD Thesis, TUB, 2007.
  108. G. M. Ziegler, Do I Count?: Stories from Mathematics, CRC Press, 2013.
  109. Konstantin Ziegler, Counting Classes of Special Polynomials, Doctoral Dissertation, University of Bonn, June 2014. (A115457A115472)
  110. Frank Zielen, Rigorose und perturbative Konstruktion von phi^4-Trajektorien, (1998) MSc Thesis, Inst. f. Theoretische Physik, Westf. Wilhelms-Uni. Münster
  111. Robert M. Ziff, "On Cardy's formula for the critical crossing probability in 2d percolation," J. Phys. A. 28, 1249-1255 (1995).
  112. Mario Ziller, JF Morack, Algorithmic concepts for the computation of Jacobsthal's function, arXiv preprint arXiv:1611.03310, 2016
  113. Jakob Zimmermann, Counting quasi-idempotent irreducible integral matrices, arXiv:1701.03699, 2017.
  114. P. Zimmermann, Gaia: a package for the random generation of combinatorial structures, Maple Technical Newsletter vol. 1 nb. 1.
  115. P. Zimmermann, Introduction to Automatic Analysis,, 2012.
  116. Ziqian (Alexa) Jin, Tetranacci Identities With Squares, Dominoes, And Hexagonal Double-Strips, arXiv:1907.09935 [math.GM], 2019. (Implicit: A000078, A000288, A001630, et al.)
  117. E. Ziv, R. Koytcheff, M. Middendorf and C. Wiggins, doi:10.1103/PhysRevE.71.0161100 Systematic identification of statistically significant network measures, Phys. Rev. E 71 (2005) 0161100
  118. M. Zivkovic, arXiv:math.CO/0511636 Classification of small (0,1) matrices, Linear Algebra and its Applications, 414 (2006), 310-346.
  119. Patxi Laborde Zubieta, Occupied corners in tree-like tableaux, preprint arXiv:1505.06098 (A184185)
  120. W. Zudilin, A generating function of the squares of Legendre polynomials, arXiv preprint arXiv:1210.2493, 2012
  121. Michael Zuker and David Sankoff, RNA secondary structures and their prediction, Bulletin of Mathematical Biology, Volume 46, Issue 4, 1984, Pages 591-621.
  122. Lorenzo Zuffi, Simplicial complexes from graphs towards graph persistence, Master's thesis, Universitá di Bologna, 2016.
  123. Roland Zumkeller, doi:10.1007/11814771_35 Formal Global Optimisation with Taylor Models, Lect. Notes Comp. Sci. (LNCS) 4130 (2006) 408-422.
  124. Pasha Zusmanovich, Lie algebras and around: selected questions, arXiv:1608.05863, 2016.
  125. A. K. Zvonkin, Enumeration of Weighted Trees, 2013; PDF
  126. K. T. Zwierzynski, Generating Integral Graphs Using PRACE Research Infrastructure, Partnership for Advanced Computing in Europe, 2013;
  127. Daniel Zwillinger, Editor in Chief, CRC Standard Mathematical Tables and Formulae, 31st Edition, Chapman & Hall / CRC Press, Boca Raton, 2003. See especially 1.2.14 Integer Sequences, 25-31, & 807, 817. See also later editions.

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.