This site is supported by donations to The OEIS Foundation.

CiteZ

From OeisWiki
Jump to: navigation, search


"... some surprising connections found over recent years between certain natural subsystems of lambda calculus and the study of graphs on surfaces, ... As with so many other such connections, this one owes its existence to the OEIS, ... as an illustration ... I will explain how to give a reformulation of the Four Color Theorem as a simple statement about typing of lambda terms." [Noam Zeilberger, 2020]

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with Z.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

References

  1. Alexey Zabelkin, Nikita Alexeev, Estimation of the True Evolutionary Distance Under the INFER Model, RECOMB International conference on Comparative Genomics, RECOMB-CG (2018): Comparative Genomics, 72-87. doi:10.1007/978-3-030-00834-5_4 (A001764)
  2. Andrey Zabolotskiy, Coweight lattice A*n and lattice simplices, arXiv:2003.10251 [math.CO], 2020. (A003051, A145394, A159842, A173824, A173877, A173878)
  3. Mike Zabrocki, The Joy of Set. To be presented at FPSAC'01 at Arizona State University in May, 2001.
  4. Efendi Zaenudin, Ezra Bernadus Wijaya, Eskezeia Yihunie Dessie, Mekala Venugopala Reddy, Jeffrey J.P. Tsai, Chien-Hung Huang,Ka-Lok Ng, A Parallel Algorithm to Generate Connected Network Motifs, IAENG Int'l J. of Computer Science (2019) Vol. 46, No. 4. PDF
  5. D. Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function. Topology 40 (2001), no. 5, 945-960.
  6. R. Zahedi, On a Deterministic Property of the Category of k-Almost Primes ..., arXiv preprint arXiv:1408.1888, 2014
  7. Dmitry Zaitsev, k-neighborhood for Cellular Automata, arXiv preprint arXiv:1605.08870, 2016
  8. Dmitry A. Zaitsev, A generalized neighborhood for cellular automata, Theoretical Computer Science, 2016, Volume 666, 1 March 2017, Pages 21–35; doi:10.1016/j.tcs.2016.11.002
  9. Saeed Zakeri, Cyclic Permutations: Degrees and Combinatorial Types, arXiv:1909.03300 [math.DS], 2019. (A002619)
  10. Stav Zalel, The structure of covtree: searching for manifestly covariant causal set dynamics, arXiv:2008.02607 [gr-qc], 2020. (A000112)
  11. Anthony Zaleski, Explicit expressions for the moments of the size of an (s, s+ 1)-core partition with distinct parts, arXiv preprint arXiv:1608.02262, 2016.
  12. Anthony Zaleski, Explicit expressions for the moments of the size of an (n, dn - 1)-core partition with distinct parts, Integers (2019) Vol. 19, Article #A26. Abstract
  13. Anthony Zaleski, Doron Zeilberger, Explicit (Polynomial!) Expressions for the Expectation, Variance and Higher Moments of the Size of a (2n+ 1, 2n+ 3)-core partition with Distinct Parts, arXiv preprint arXiv:1611.05775, 2016
  14. Anthony Zaleski, Doron Zeilberger, On the Intriguing Problem of Counting (n + 1, n + 2)-Core Partitions into OddParts,https://arxiv.org/pdf/1712.10072.pdf
  15. M. P. Zaletel and R. S. K. Mong, Exact Matrix Product States for Quantum Hall Wave Functions, Arxiv preprint arXiv:1208.4862, 2012.
  16. Gorka Zamora-López, Romain Brasselet, Sizing the length of complex networks, arXiv:1810.12825 [physics.soc-ph], 2018. (A060432)
  17. Diyar O. Mustafa Zangana, Ahmet Öteleş, Padovan Numbers by the Permanents of a Certain Complex Pentadiagonal Matrix, J. of Garmian Univ. (2018) Vol. 5, No. 2, 330-338. doi:10.24271/garmian.346 (A000931)
  18. Richard Zanibbi, K Davila, A Kane, F Tompa, Multi-Stage Math Formula Search: Using Appearance-Based Similarity Metrics at Scale, Preprint 2016; https://www.cs.rit.edu/~rlaz/files/sigir-tangent.pdf
  19. Hans Zantema, Complexity of Automatic Sequences, International Conference on Language and Automata Theory and Applications (LATA 2020): Language and Automata Theory and Applications, 260-271. doi:10.1007/978-3-030-40608-0_18 (A010060, A014577)
  20. Leon Zaporski, Felix Flicker, Superconvergence of Topological Entropy in the Symbolic Dynamics of Substitution Sequences, arXiv:1811.00331 [nlin.CD], 2018. (A000129, A125905)
  21. Catalin Zara, Cardinality of l_1-Segments and Genocchi Numbers, arXiv preprint arXiv:1304.5798, 2013
  22. Yoram Zarai, Michael Margaliot, and Tamir Tuller. A Deterministic Mathematical Model for Bidirectional Excluded Flow with Langmuir Kinetics, arXiv:1609.05676, 2016.
  23. A. A. Zaslavskii, Geometry of paired comparisons, Automation and Remote Control, Volume 68, Number 3 / March, 2007.
  24. Thomas Zaslavsky, A new distribution problem of balls into urns and how to color a graph by different-sized sets (2006), arXiv:math/0609049.
  25. Bogdán Zaválnij, The k-Clique Problem--Usage, Modeling Expressivity, Serial and Massively Parallel Algorithms, Ph. D. Dissertation, University of Szeged (Hungary, 2020). PDF (A265032)
  26. A. V. Zavarnitsine, Finite simple groups with narrow prime spectrum, Sib. El. Math. Rep. 6 (2009) 1-12.
  27. Mathias Zechmeister, Solving Kepler's equation with CORDIC double iterations, arXiv:2008.02894 [astro-ph.IM], 2020. (A003462)
  28. Sa’ar Zehavi, Ivo Fagundes David de Oliveira, Not Conway's 99-Graph Problem, research paper, Department of Computer Science, Technion, Sep 15 2017. PDF (A248380)
  29. D. Zeilberger, 1998 Steele Prizes, Notices of the AMS, April 1998.
  30. D. Zeilberger, The Umbral Transfer-Matrix Method. IV. Counting Self-Avoiding Polygons and Walks, Electronic Journal of Combinatorics, Volume 8(1), 2001, article #R28.
  31. Doron Zeilberger, There are More Than 2**(n/17) n-Letter Ternary Square-Free Words (1998), arXiv:math/9809135.
  32. Doron Zeilberger, In How Many Ways Can You Reassemble Several Russian Dolls?, arXiv:0909.3453 [math.CO]
  33. Doron Zeilberger, Opinion 124: A Database is Worth a Thousand Mathematical Articles: An Ode to Neil Sloane's On-line Encyclopedia of Integer Sequences (OEIS), http://www.math.rutgers.edu/~zeilberg/Opinion124.html
  34. D. Zeilberger, Automatic Enumeration of Generalized Menage Numbers, arXiv preprint arXiv:1401.1089, 2014
  35. D. Zeilberger, An Explicit Conjectured Determinant Evaluation Whose Proof Would Make Me Happy (and the OEIS richer), arXiv preprint arXiv:1401.1532, 2014.
  36. Doron Zeilberger, Noam Zeilberger, Two Questions about the Fractional Counting of Partitions, arXiv:1810.12701 [math.CO], 2018. (A000041, A000079, A000142)
  37. Noam Zeilberger, Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596, 2015.
  38. Noam Zeilberger, Towards a mathematical science of programming, Preprint 2015; http://noamz.org/research-statement-short.pdf
  39. Noam Zeilberger, Linear lambda terms as invariants of rooted trivalent maps, arXiv preprint arXiv:1512.06751, 2015
  40. Noam Zeilberger, "A Sequent Calculus for a Semi-Associative Law", 2nd International Conference on Formal Structures for Computation and Deduction, LIPIcs, 2017, PDF.
  41. Noam Zeilberger, A sequent calculus for the Tamari order, arXiv:1701.02917, 2017.
  42. Noam Zeilberger, <a href="https://arxiv.org/abs/1803.10080">A Sequent Calculus for a Semi-Associative Law</a>, arXiv preprint 1803.10030, March 2018 (A revised version of a 2017 conference paper)
  43. Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018. (A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827)
  44. Noam Zeilberger, <a href="http://noamz.org/talks/expmath.2020.06.18.pdf">From Lambda Calculus to the Four Color Theorem, via Experimental Mathematics</a>, Rutgers Experimental Math Seminar, Jun 18 2020. For the video see http://noamz.org/videos/expmath.2020.06.18.mp4. From the Abstract: "... I will survey some surprising connections found over recent years between certain natural subsystems of lambda calculus and the study of graphs on surfaces, or "maps", and in particular the enumerative theory of maps initiated by Tutte in the 1960s. As with so many other such connections, this one owes its existence to the OEIS, and so I will present some practical background on how lambda terms may be efficiently enumerated, generated, and manipulated. Finally, as an illustration of one of the more amusing mashups of these explorations, I will explain how to give a reformulation of the Four Color Theorem as a simple statement about typing of lambda terms."
  45. Noam Zeilberger and Alain Giorgetti, A correspondence between rooted planar maps and normal planar lambda terms, arXiv:1408.5028 [cs.LO], 2014.
  46. Noam Zeilberger and Alain Giorgetti, On Rooted Planar Maps and Normal Planar Lambda Terms, preprint, 2015. (A000168, A062980, A220910)
  47. Zeilinger Group, Quantum Entanglement in High-Dimensional Systems, Austrian Academy of Sciences Institute for Quantum Optics and Quantum Information, Vienna (2020). HTML Our small subgroup is mainly interested in finding new physical phenomena and concepts that allow experimental access to complex quantum systems. To do so, we develop and use the latest computer-based methods, such as Melvin [7] or online databases such as OEIS. The physical system in our case consists of single or multiple photons capable of encoding high-dimensional quantum information.
  48. DIE ZEIT, 4 Oktober 2018, No. 41, page 40: Grafik No. 486: Mathematik. Besondere Zahlen. Recherche: Christoph Drösser, Illustration: Maren Amini
  49. J. Zelinsky, "A Partial Proof of a Conjecture and Other Results", J. Integer Sequences, Volume 5, 2002, Article 02.2.8.
  50. Claude Zeller, Robert Cordery, Light scattering as a Poisson process and first passage probability, arXiv:1906.11131 [cond-mat.stat-mech], 2019. (A055151)
  51. Alexsandr Zemlyanukhin, Andrey Bochkarev, Exact Solutions and Numerical Simulation of the Discrete Sawada–Kotera Equation, Symmetry (2020) Vol. 12, No. 1, 131. doi:10.3390/sym12010131
  52. Luke Zeng, Shawn Xin, Avadesian Xu, Thomas Pang, Tim Yang, Maolin Zheng, Seele's New Anti-ASIC Consensus Algorithm with Emphasis on Matrix Computation, arXiv:1905.04565 [cs.CR], 2019. (A003432, A051752)
  53. Hector Zenil, The smallest universal Turing machine implementation contest, retrieved 7 November 2018 HTML. (A141474, A141475)
  54. Hector Zenil, A Review of Methods for Estimating Algorithmic Complexity: Options, Challenges, and New Directions, arXiv:2003.11044 [cs.IT], 2020.
  55. Hector Zenil, N Kiani, J Tegner, Low Algorithmic Complexity Entropy-deceiving Graphs, arXiv preprint arXiv:1608.05972, 2016.
  56. Gabriel Martín Zeolla, Cubic Power Algorithm Using Polynomials, (2019). PDF (A000096, A000217, A000292, A000578, A002378, A005843, A070770)
  57. Gabriel Martin Zeolla, Formula to get twin prime numbers, (2019). PDF (A001097, A001359, A002822, A006512)
  58. Gabriel Martin Zeolla, Multiples of the Simple composite numbers by Golden Patterns, (2019). PDF (A052548)
  59. Gabriel Martín Zeolla, Square power algorithm using polynomials, (2019). PDF (A051162)
  60. Dainis Zeps, On Grinbergs' differential geometry and finite fields, University of Latvia (2019). doi:10.13140/RG.2.2.28885.27367 (A074243)
  61. Cheng Zhang and Jianpeng Ma, Counting Solutions for the N-queens and Latin Square Problems by Efficient Monte Carlo Simulations (2008); arXiv:0808.4003
  62. Cheng Zhang and Jianpeng Ma, doi:10.1103/PhysRevE.79.016703 Counting solutions for the N-queens and latin-square problems by Monte Carlo simulations, Phys. Rev. E 79 (2009) 016703
  63. D. Zhang, W. Zhai, Mean Values of a Gcd-Sum Function Over Regular Integers Modulo n, J. Int. Seq. 13 (2010), 10.4.7.
  64. D. Zhang, W. Zhai, Mean Values of a Class of Arithmetical Functions, J. Int. Seq. 14 (2011) #11.6.5
  65. D. Zhang, W. Zhai, On an Open Problem of Tóth, J. Int. Seq. 16 (2013) #13.6.5
  66. Hao Zhang and Daniel Gildea, "Enumeration of Factorizable Multi-Dimensional Permutations", J. Integer Sequences, Volume 10, 2007, Article 07.5.8.
  67. Jiemeng Zhang, Zhixiong Wen, Wen Wu, Some Properties of the Fibonacci Sequence on an Infinite Alphabet, Electronic Journal of Combinatorics, 24(2) (2017), #P2.52.
  68. Juling Zhang, Guowu Yang, William N. N. Hung, Tian Liu, Xiaoyu Song, Marek A. Perkowski, A Group Algebraic Approach to NPN Classification of Boolean Functions, Theory of Computing Systems (2018), 1–20. doi:10.1007/s00224-018-9903-0 (A000370)
  69. LiJun Zhang, Bing Li, LeeTang Cheng, Constructions of QC LDPC codes based on integer sequences, Science China Information Sciences, June 2014, Volume 57, Issue 6, pp 1-14.
  70. Lin Zhang, A Likelihood Ratio Test of Independence of Components for High-dimensional Normal Vectors, MS Thesis, Univ. Minnesota, 2013; http://www.d.umn.edu/math/Technical%20Reports/Technical%20Reports%202007-/TR%202013/Lin%20Zhang%20thesis_masters-4.pdf
  71. Philip B. Zhang, On the Real-rootedness of the Descent Polynomials of (n-2)-Stack Sortable Permutations, arXiv preprint arXiv:1408.4235, 2014
  72. Tianping Zhang and Yuankui Ma, "On Generalized Fibonacci Polynomials and Bernoulli Numbers", J. Integer Sequences, Volume 8, 2005, Article 05.5.3.
  73. X.-M. Zhang and X.-D. Zhang, Trees with given degree sequences that have minimal subtrees, Arxiv preprint arXiv:1209.0273, 2012
  74. X.-M. Zhang, X.-D. Zhang, D. Gray and H. Wang, Trees with the most subtrees--an algorithmic approach, arXiv preprint arXiv:1210.2871, 2012
  75. Yan Zhang, F. Yang, W. Song, Performance Analysis for Cooperative Communication System with QC-LDPC Codes Constructed with Integer Sequences, Discrete Dynamics in Nature and Society, Volume 2015, Article ID 649814, 7 pages; doi:10.1155/2015/649814.
  76. Yan X Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318, 2015
  77. Yifan Zhang, George Grossman, A Combinatorial Proof for the Generating Function of Powers of a Second-Order Recurrence Sequence, Journal of Integer Sequences, Vol. 21 (2018), Article 18.3.3. HTML (A000032, A000045, A000129, A000290, A000578, A000583, A000584, A001014, A001015, A001016, A001017, A001045, A001477, A001582, A007598, A008292, A008454, A030186, A056570, A056571, A056572, A056573, A056574, A056585, A056586, A056587, A079291, A110272, A139818)
  78. Ying Zhang, An elementary proof of uniqueness of Markoff numbers which are prime powers (2006), arXiv:math/0606283.
  79. Zhang, Ying, Congruence and uniqueness of certain Markoff numbers. Acta Arith. 128 (2007), no. 3, 295-301.
  80. Yuanzhao Zhang, Takashi Nishikawa, Adilson E. Motter, Asymmetry-Induced Synchronization in Oscillator Networks, arXiv:1705.07907 [nlin.AO], 2017.
  81. Yue Zhang, Chunfang Zheng, David Sankoff, Distinguishing successive ancient polyploidy levels based on genome-internal syntenic alignment, BMC Bioinformatics (2019) Vol. 20, 635. doi:10.1186/s12859-019-3202-x (A000292)
  82. Zhujun Zhang, A Note on Counting Dependency Trees, arXiv:1708.08789 [math.GM], 2017, Page 3.
  83. Zhujun Zhang, A Note on Counting Binomial Heaps, (2019). PDF (A000120, A001316, A011371, A049606, A067667)
  84. A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
  85. Alina F. Y. Zhao, Bijective proofs for some results on the descent polytope, AUSTRALASIAN JOURNAL OF COMBINATORICS, Volume 65(1) (2016), Pages 45–52.
  86. Jianqiang Zhao, Uniform Approach to Double Shuffle and Duality Relations of Various q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras, arXiv preprint arXiv:1412.8044, 2014
  87. Jianqiang Zhao, Finite Multiple zeta Values and Finite Euler Sums, arXiv preprint arXiv:1507.04917, 2015
  88. Liang Zhao and Fengyao Yan, Note on Total Positivity for a Class of Recursive Matrices, Journal of Integer Sequences, Vol. 19 (2016), Article 16.6.5.
  89. T. Zhao, B. K. Ben Mahmoud, M. A. Toumi et al Some new properties of applied-physics related Boubaker polynomials
  90. Xuxu Zhao, Xu Wang, Haiyuan Yao, Some enumerative properties of a class of Fibonacci-like cubes, arXiv:1905.00573 [math.CO], 2019. (A027907)
  91. Y. Zhao, doi:10.1016/j.jnt.2009.11.005 Constructing MSTD sets using bidirectional ballot sequences, J. Numb. Theory 130 (50 (2010) 1212-1220
  92. Yufei Zhao, Constructing numerical semigroups of a given genus, doi:10.1007/s00233-009-9190-9, Semigroup Forum 80 (2010) 242-254.
  93. Chris Zheng, Jeffrey Zheng, Triangular Numbers and Their Inherent Properties, Variant Construction from Theoretical Foundation to Applications, Springer, Singapore, 51-65. doi:10.1007/978-981-13-2282-2_4 (A007318, A035312, A102639, A194005)
  94. Huaxian Zheng, Jeffrey Zheng, 2D Similarity Map of Multiple Coronavirus Gene Sequences, (2020). PDF
  95. Li-Na Zheng, Rui Liu, and Feng-Zhen Zhao, "On the Log-Concavity of the Hyperfibonacci Numbers and the Hyperlucas Numbers", Journal of Integer Sequences, Vol. 17 (2014), #14.1.4.
  96. S.-n. Zheng and S.-l. Yang, On the-Shifted Central Coefficients of Riordan Matrices, Journal of Applied Mathematics, Volume 2014, Article ID 848374, 8 pages; doi:10.1155/2014/848374
  97. Jian Zhou, On a Mean Field Theory of Topological 2D Gravity, arXiv preprint arXiv:1503.08546, 2015.
  98. Jian Zhou, Hermitian One-Matrix Model and KP Hierarchy, arXiv:1809.07951 [math-ph], 2018. (A035309)
  99. Jian Zhou, Fat and Thin Emergent Geometries of Hermitian One-Matrix Models, arXiv:1810.03883 [math-ph], 2018. (A000168, A000309, A001764, A001791, A002005, A002006, A002007, A002008, A002009, A002010, A002293, A002294, A002295, A002296, A007556, A062744, A062994, A085614, A104978, A230388)
  100. Ping Zhou, Covering rough sets based on neighborhoods: an approach without using neighborhoods, Int. J. Approx. Reas. 52 (2011) 461-472. doi:10.1016/j.ijar.2010.10.005
  101. Shujie Zhou, Li Chen, Tribonacci Numbers and Some Related Interesting Identities, Symmetry (2019) Vol. 11, No. 10, 1195. doi:10.3390/sym11101195 (A000073)
  102. Yajun Zhou, Hilbert Transforms and Sum Rules of Bessel Moments, arXiv:1706.01068 [math.CA}, 2017.
  103. Yajun Zhou, Some algebraic and arithmetic properties of Feynman diagrams, arXiv:1801.05555 [math.NT], 2018. (A262961)
  104. Bao-Xuan Zhu, Analytic approaches to monotonicity and log-behavior of combinatorial sequences, arXiv preprint arXiv:1309.5693, 2013
  105. Bao-Xuan Zhu, Higher order log-monotonicity of combinatorial sequences, arXiv preprint arXiv:1309.6025, 2013
  106. Bao-Xuan Zhu, Linear transformations and strong q-log-concavity for certain combinatorial triangle, arXiv preprint arXiv:1605.00257, 2016
  107. Bao-Xuan Zhu, Stability of iterated polynomials and linear transformations preserving the strong q-log-convexity, arXiv preprint arXiv:1609.01544, 2016.
  108. Bao-Xuan Zhu, q-log-convexity from linear transformations and polynomials with only real zeros, European Journal of Combinatorics 73 (2018), 231-246. doi:10.1016/j.ejc.2018.06.003
  109. Bao-Xuan Zhu, Total positivity from a generalized cycle index polynomial, arXiv:2006.14485 [math.CO], 2020. (A008297, A102625, A137452)
  110. Bao-Xuan Zhu, Stieltjes moment properties and continued fractions from combinatorial triangles, arXiv:2007.14924 [math.CO], 2020, see p. 27. (A008303, A008971)
  111. Bao-Xuan Zhu, On a Stirling-Whitney-Riordan triangle, arXiv:2008.04120 [math.CO], 2020. (A001861)
  112. Christopher Zhu, Enumerating permutations with singleton double descent sets, The Roxbury Latin School, MIT PRIMES Conference (2019). PDF (A049774, A080635)
  113. Christopher Zhu, Enumerating Permutations and Rim Hooks Characterized by Double Descent Sets, arXiv:1910.12818 [math.CO], 2019. (A000045, A049774, A080635)
  114. Yi Zhu, Evgueni T. Filipov, An efficient numerical approach for simulating contact in origami assemblages, Proc. R. Soc. A (2019) Vol. 475, 20190366. doi:10.1098/rspa.2019.0366 (A000670)
  115. Yan Zhuang, Monoid networks and counting permutations by runs, preprint arXiv:1505.02308 (A008303, A008971, A059427, A186370, A162975, A162976). Second version has new title: Yan Zhuang, Counting permutations by runs, arXiv preprint arXiv:1505.02308v2, 2015
  116. Zhuang, Yan. "A generalized Goulden–Jackson cluster method and lattice path enumeration." Discrete Mathematics 341.2 (2018): 358-379.
  117. Yan Zhuang, Noncommutative Symmetric Functions and Permutation Enumeration, Ph. D. Dissertation, Brandeis University, 2018. partial HTML
  118. F. Zickfeld, Geometric and combinatorial structures on graphs, PhD Thesis, TUB, 2007.
  119. G. M. Ziegler, Do I Count?: Stories from Mathematics, CRC Press, 2013.
  120. Konstantin Ziegler, Counting Classes of Special Polynomials, Doctoral Dissertation, University of Bonn, June 2014. (A115457A115472)
  121. Frank Zielen, Rigorose und perturbative Konstruktion von phi^4-Trajektorien, (1998) MSc Thesis, Inst. f. Theoretische Physik, Westf. Wilhelms-Uni. Münster
  122. Robert M. Ziff, "On Cardy's formula for the critical crossing probability in 2d percolation," J. Phys. A. 28, 1249-1255 (1995).
  123. Mario Ziller, JF Morack, Algorithmic concepts for the computation of Jacobsthal's function, arXiv preprint arXiv:1611.03310, 2016
  124. Jakob Zimmermann, Counting quasi-idempotent irreducible integral matrices, arXiv:1701.03699, 2017.
  125. P. Zimmermann, Gaia: a package for the random generation of combinatorial structures, Maple Technical Newsletter vol. 1 nb. 1.
  126. P. Zimmermann, Introduction to Automatic Analysis, http://www.stat.purdue.edu/~mdw/ChapterIntroductions/AutomaticAnalysisZimmermann.pdf, 2012.
  127. Ziqian (Alexa) Jin, Tetranacci Identities With Squares, Dominoes, And Hexagonal Double-Strips, arXiv:1907.09935 [math.GM], 2019. (Implicit: A000078, A000288, A001630, et al.)
  128. E. Ziv, R. Koytcheff, M. Middendorf and C. Wiggins, doi:10.1103/PhysRevE.71.0161100 Systematic identification of statistically significant network measures, Phys. Rev. E 71 (2005) 0161100
  129. M. Zivkovic, arXiv:math.CO/0511636 Classification of small (0,1) matrices, Linear Algebra and its Applications, 414 (2006), 310-346.
  130. Miloslav Znojil, Perturbation theory near degenerate exceptional points, arXiv:2008.00479 [math-ph], 2020. (A000041, A000094, A083751)
  131. Patxi Laborde Zubieta, Occupied corners in tree-like tableaux, preprint arXiv:1505.06098 (A184185)
  132. W. Zudilin, A generating function of the squares of Legendre polynomials, arXiv preprint arXiv:1210.2493, 2012
  133. Michael Zuker and David Sankoff, RNA secondary structures and their prediction, Bulletin of Mathematical Biology, Volume 46, Issue 4, 1984, Pages 591-621.
  134. Lorenzo Zuffi, Simplicial complexes from graphs towards graph persistence, Master's thesis, Universitá di Bologna, 2016.
  135. Roland Zumkeller, doi:10.1007/11814771_35 Formal Global Optimisation with Taylor Models, Lect. Notes Comp. Sci. (LNCS) 4130 (2006) 408-422.
  136. Rimer Zurita, Generalized Alternating Sums of Multiplicative Arithmetic Functions, J. Int. Seq., Vol. 23 (2020), Article 20.10.4. HTML (A065442, A065463)
  137. Pasha Zusmanovich, Lie algebras and around: selected questions, arXiv:1608.05863, 2016.
  138. A. K. Zvonkin, Enumeration of Weighted Trees, 2013; PDF
  139. K. T. Zwierzynski, Generating Integral Graphs Using PRACE Research Infrastructure, Partnership for Advanced Computing in Europe, 2013; http://www.prace-ri.eu/IMG/pdf/wp58_generating_integral_graphs_using_the_prace_research_infrastructure.pdf
  140. Daniel Zwillinger, Editor in Chief, CRC Standard Mathematical Tables and Formulae, 31st Edition, Chapman & Hall / CRC Press, Boca Raton, 2003. See especially 1.2.14 Integer Sequences, 25-31, & 807, 817. See also later editions.

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.