login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001582
Product of Fibonacci and Pell numbers.
(Formerly M1966 N0779)
4
1, 2, 10, 36, 145, 560, 2197, 8568, 33490, 130790, 510949, 1995840, 7796413, 30454814, 118965250, 464711184, 1815292333, 7091038640, 27699580729, 108202305420, 422668460890, 1651061182538, 6449506621417, 25193576136960
OFFSET
0,2
COMMENTS
Also number of perfect matchings (or domino tilings) in the graph W_4 X P_n.
In general, the termwise product of two Horadam sequences having signatures of (a,b) and (c,d) will be a fourth-order sequence with signature (a*c,a^2*d+2*b*d+b*c^2,a*b*c*d,-b^2*d^2). - Gary Detlefs, Oct 13 2020
a(n) + a(n-1) is the numerator of the continued fraction [1,...,1,2,...,2] with n 1's followed by n 2's. - Greg Dresden and Hexuan Wang, Aug 16 2021
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. L. Diaz-Barrero and J. J. Egozcue, Problem H-605, Fib. Q., 43 (No. 1, 2005), 92.
Ira M. Gessel and Ishan Kar, Binomial convolutions for rational power series, arXiv:2304.10426 [math.CO], 2023.
D. C. Mead, An elementary method of summation, Fib. Quart. 3 (1965), 209-213.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
James A. Sellers, Domino Tilings and Products of Fibonacci and Pell Numbers, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.2.
Eric Weisstein's World of Mathematics, Horadam Sequence.
Yifan Zhang and George Grossman, A Combinatorial Proof for the Generating Function of Powers of a Second-Order Recurrence Sequence, J. Int. Seq. 21 (2018), #18.3.3.
FORMULA
G.f.: (1-x^2)/(1-2*x-7*x^2-2*x^3+x^4).
From Kieren MacMillan, Sep 29 2008: (Start)
a(n) = 11*a(n-2) + 16*a(n-3) + 3*a(n-4) - 2*a(n-5).
a(n) = 2*a(n-1) + 7*a(n-2) + 2*a(n-3) - a(n-4). (End)
a(n) = ((10+5*sqrt(2)+2*sqrt(5)+sqrt(10))*((1+sqrt(2)+sqrt(5)+sqrt(10))/2)^n+(10-5*sqrt(2)-2*sqrt(5)+sqrt(10))*((1-sqrt(2)-sqrt(5)+sqrt(10))/2)^n+(10+5*sqrt(2)-2*sqrt(5)-sqrt(10))*((1+sqrt(2)-sqrt(5)-sqrt(10))/2)^n+(10-5*sqrt(2)+2*sqrt(5)-sqrt(10))*((1-sqrt(2)+sqrt(5)-sqrt(10))/2)^n)/40. - Tim Monahan, Aug 03 2011
a(n) = A166989(n) - A166989(n-2). - R. J. Mathar, Jul 14 2016
MAPLE
A001582:=-(z-1)*(1+z)/(1-2*z-7*z**2-2*z**3+z**4); # [conjectured (correctly) by Simon Plouffe in his 1992 dissertation]
MATHEMATICA
CoefficientList[Series[(1-x^2)/(1-2x-7x^2-2x^3+x^4), {x, 0, 30}], x] (* or *) LinearRecurrence[{2, 7, 2, -1}, {1, 2, 10, 36}, 30] (* Harvey P. Dale, May 01 2011 *)
CROSSREFS
Sequence in context: A192858 A202796 A335559 * A357035 A370713 A026546
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from James A. Sellers, May 01 2000
STATUS
approved