login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001582 Product of Fibonacci and Pell numbers.
(Formerly M1966 N0779)
3
1, 2, 10, 36, 145, 560, 2197, 8568, 33490, 130790, 510949, 1995840, 7796413, 30454814, 118965250, 464711184, 1815292333, 7091038640, 27699580729, 108202305420, 422668460890, 1651061182538, 6449506621417, 25193576136960 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also number of perfect matchings (or domino tilings) in the graph W_4 X P_n.

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=0..200

J. L. Diaz-Barrero and J. J. Egozcue, Problem H-605, Fib. Q., 43 (No. 1, 2005), 92.

F. Faase, Counting Hamiltonian cycles in product graphs

F. Faase, Results from the counting program

D. C. Mead, An elementary method of summation, Fib. Quart. 3 (1965), 209-213.

I. Mezo, Several Generating Functions for Second-Order Recurrence Sequences , JIS 12 (2009) 09.3.7

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

James A. Sellers, Domino Tilings and Products of Fibonacci and Pell Numbers, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.2.

Yifan Zhang, George Grossman, A Combinatorial Proof for the Generating Function of Powers of a Second-Order Recurrence Sequence, J. Int. Seq. 21 (2018), #18.3.3.

Index entries for sequences related to dominoes

Index entries for linear recurrences with constant coefficients, signature (2, 7, 2, -1).

FORMULA

G.f.: (1-x^2)/(1-2*x-7*x^2-2*x^3+x^4).

a(n)=11a(n-2)+16a(n-3)+3a(n-4)-2a(n-5). a(n)=2a(n-1)+7a(n-2)+2a(n-3)-a(n-4). - Kieren MacMillan, Sep 29 2008

a(n)=((10+5*sqrt(2)+2*sqrt(5)+sqrt(10))*((1+sqrt(2)+sqrt(5)+sqrt(10))/2)^n+(10-5*sqrt(2)-2*sqrt(5)+sqrt(10))*((1-sqrt(2)-sqrt(5)+sqrt(10))/2)^n+(10+5*sqrt(2)-2*sqrt(5)-sqrt(10))*((1+sqrt(2)-sqrt(5)-sqrt(10))/2)^n+(10-5*sqrt(2)+2*sqrt(5)-sqrt(10))*((1-sqrt(2)+sqrt(5)-sqrt(10))/2)^n)/40. - Tim Monahan, Aug 03 2011

a(n) = A166989(n)-A166989(n-2). - R. J. Mathar, Jul 14 2016

MAPLE

A001582:=-(z-1)*(1+z)/(1-2*z-7*z**2-2*z**3+z**4); [Conjectured (correctly) by Simon Plouffe in his 1992 dissertation.]

MATHEMATICA

CoefficientList[Series[(1-x^2)/(1-2x-7x^2-2x^3+x^4), {x, 0, 30}], x] (* or *) LinearRecurrence[{2, 7, 2, -1}, {1, 2, 10, 36}, 30] (* Harvey P. Dale, May 01 2011 *)

CROSSREFS

Cf. A000045, A000129.

Sequence in context: A265844 A192858 A202796 * A026546 A256105 A151020

Adjacent sequences:  A001579 A001580 A001581 * A001583 A001584 A001585

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from James A. Sellers, May 01 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 17:23 EDT 2020. Contains 333116 sequences. (Running on oeis4.)