login
A026546
a(n) = T(2n-1,n-2), T given by A026536.
2
1, 2, 10, 36, 150, 602, 2485, 10256, 42687, 178300, 747912, 3146936, 13278707, 56163758, 238052050, 1010857520, 4299545769, 18314436414, 78115839734, 333583225740, 1426072211137, 6102528959956, 26138050436822, 112046904456640, 480686415837200, 2063641522153406, 8865329237958042, 38108667849379540
OFFSET
2,2
LINKS
FORMULA
a(n) = A026536(2*n-1, n-2).
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
Table[T[2n-1, n-2], {n, 2, 40}] (* G. C. Greubel, Apr 11 2022 *)
PROG
(SageMath)
@CachedFunction
def T(n, k): # A026536
if k < 0 or n < 0: return 0
elif k == 0 or k == 2*n: return 1
elif k == 1 or k == 2*n-1: return n//2
elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
def A026546(n): return T(2*n-1, n-2)
[A026546(n) for n in (2..40)] # G. C. Greubel, Apr 11 2022
CROSSREFS
Cf. A026536.
Sequence in context: A001582 A357035 A370713 * A256105 A151020 A151021
KEYWORD
nonn
EXTENSIONS
Terms a(20) onward added by G. C. Greubel, Apr 11 2022
STATUS
approved