login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335559
a(n) = 3*a(n-1) + 4*a(n-2) - 2*a(n-3) with a(0)=0, a(1)=1, a(2)=2.
10
0, 1, 2, 10, 36, 144, 556, 2172, 8452, 32932, 128260, 499604, 1945988, 7579860, 29524324, 115000436, 447938884, 1744769748, 6796063908, 26471392948, 103108894980, 401620128916, 1564353180772, 6093322268020, 23734139269316, 92447000518484, 360090914096676
OFFSET
0,3
COMMENTS
For n > 0, a(n) is the number of ways to tile a 2 X 2 X (n-1) box with 1 X 1 X 1 cubes and 1 X 2 X 2 plates.
FORMULA
G.f.: (1 - x) / (1 - 3*x - 4*x^2 + 2*x^3). - Colin Barker, Jun 14 2020
EXAMPLE
Here are four of the a(4) = 36 possible tilings of a 2 x 2 x 3 box with cubes and plates:
. ______ ______ ______ _______
./ / / /| / /___/| /___/ /| / / /|
/_/_/_/ | /_/___/|| /___/_/ | /_/___ //|
| | | | / | | ||/ | | | / | |___|//
|_|_|_|/ |_|___|/ |_ _|_|/ |_|___|/
MATHEMATICA
LinearRecurrence[{3, 4, -2}, {0, 1, 2}, 30] (* Greg Dresden, Jun 14 2020 *)
PROG
(PARI) Vec((1 - x) / (1 - 3*x - 4*x^2 + 2*x^3) + O(x^30)) \\ Colin Barker, Jun 14 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Qianyu Guo, Jun 14 2020
EXTENSIONS
More terms from Colin Barker, Jun 14 2020
STATUS
approved