login
A335556
Irregular table read by rows: n-sect the angles of a pentagon. Then T(n,k) is the number of k-sided polygons in that figure for k >= 3.
4
0, 0, 1, 10, 10, 0, 1, 50, 10, 50, 60, 15, 5, 0, 0, 0, 1, 60, 30, 110, 125, 30, 0, 0, 5, 5, 1, 150, 140, 20, 150, 90, 70, 10, 5, 0, 0, 1, 240, 200, 60, 10, 230, 355, 75, 40, 0, 5, 0, 1, 300, 190, 80, 10, 360, 400, 175, 25, 10, 10, 0, 1, 460, 430, 150, 30
OFFSET
1,4
COMMENTS
See A335553 for illustrations.
For n<=200 no polygon has more than 10 edges.
LINKS
Lars Blomberg, Table of n, a(n) for n = 1..1351 (the first 200 rows)
EXAMPLE
The table begins
0, 0, 1;
10;
10, 0, 1;
50, 10;
50, 60, 15, 5, 0, 0, 0, 1;
60, 30;
110, 125, 30, 0, 0, 5, 5, 1;
150, 140, 20;
150, 90, 70, 10, 5, 0, 0, 1;
240, 200, 60, 10;
230, 355, 75, 40, 0, 5, 0, 1;
300, 190, 80, 10;
360, 400, 175, 25, 10, 10, 0, 1;
460, 430, 150, 30;
CROSSREFS
Cf. A331939 (n-sected sides, not angles), A335553 (regions), A335554 (vertices), A335555 (edges).
Sequence in context: A244960 A378564 A282560 * A286775 A286121 A285537
KEYWORD
nonn,tabf
AUTHOR
Lars Blomberg, Jun 20 2020
STATUS
approved