OFFSET
0,2
COMMENTS
The sequence is infinite and grows exponentially.
REFERENCES
J. P. Delahaye and H. Zenil, "On the Kolmogorov-Chaitin complexity for short sequences,"Randomness and Complexity: From Leibniz to Chaitin, edited by C.S. Calude, World Scientific, 2007.
J. P. Delahaye and H. Zenil, "Towards a stable definition of Kolmogorov-Chaitin complexity", to appear in Fundamenta Informaticae, 2009.
T. Rado, On non-computable functions, Bell System Tech. J., 41 (1962), 877-884.
LINKS
Jason Yuen, Table of n, a(n) for n = 0..175
J. P. Delahaye and H. Zenil, Towards a stable definition of Kolmogorov-Chaitin complexity, arXiv:0804.3459 [cs.IT], 2008-2010.
Hector Zenil, The experimental AIT project
FORMULA
(4n+2)^(2n)
EXAMPLE
a(3) = 7529536 because the number of n-state 2-symbol Turing machines is 7529536 according to the formula (4n+2)^(2n).
MATHEMATICA
Plus[Times[4, n], 2]^Times[2, n]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Hector Zenil (hector.zenil-chavez(AT)malix.univ-paris1.fr), Aug 09 2008
EXTENSIONS
a(0)=1 inserted by Jason Yuen, Jul 10 2024
STATUS
approved