login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A141475
Number of Turing machines with n states following the standard formalism of the busy beaver problem where the head of a Turing machine either moves to the right or to the left, but none once halted.
3
1, 36, 10000, 7529536, 11019960576, 26559922791424, 95428956661682176, 478296900000000000000, 3189059870763703892770816, 27296360116495644500385071104, 291733167875766667063796853374976, 3807783932766699862493193563344470016, 59604644775390625000000000000000000000000
OFFSET
0,2
COMMENTS
The sequence is infinite and grows exponentially.
REFERENCES
J. P. Delahaye and H. Zenil, "On the Kolmogorov-Chaitin complexity for short sequences,"Randomness and Complexity: From Leibniz to Chaitin, edited by C.S. Calude, World Scientific, 2007.
J. P. Delahaye and H. Zenil, "Towards a stable definition of Kolmogorov-Chaitin complexity", to appear in Fundamenta Informaticae, 2009.
T. Rado, On non-computable functions, Bell System Tech. J., 41 (1962), 877-884.
FORMULA
(4n+2)^(2n)
EXAMPLE
a(3) = 7529536 because the number of n-state 2-symbol Turing machines is 7529536 according to the formula (4n+2)^(2n).
MATHEMATICA
Plus[Times[4, n], 2]^Times[2, n]
CROSSREFS
Sequence in context: A233171 A058466 A277603 * A233126 A201003 A271335
KEYWORD
nonn,easy
AUTHOR
Hector Zenil (hector.zenil-chavez(AT)malix.univ-paris1.fr), Aug 09 2008
EXTENSIONS
a(0)=1 inserted by Jason Yuen, Jul 10 2024
STATUS
approved