OFFSET
0,1
COMMENTS
The sequence of real values x(n) = (1 - 1/2)^((1/2 - 1/3)^(...^(1/n - 1/(n+1)))) converges to two different limits depending on whether n is even or odd. This integer sequence gives the decimal expansion of the lower limit, to which the odd-indexed terms of {x(n)} converge.
LINKS
Zeraoulia Rafik, Question on Math Stackexchange
EXAMPLE
0.56778606544394002098000796382530333102219963214865...
PROG
(PARI) my(N=99, y=(1/(N*(N+1)))); forstep(n=N-1, 1, -1, y=1/(n*(n+1))^y); y \\ Michel Marcus, Nov 08 2019
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
R Zeraoulia, Oct 31 2019
EXTENSIONS
More terms from Jon E. Schoenfield, Nov 02 2019
STATUS
approved